ترغب بنشر مسار تعليمي؟ اضغط هنا

Using AI for Mitigating the Impact of Network Delay in Cloud-based Intelligent Traffic Signal Control

60   0   0.0 ( 0 )
 نشر من قبل Rusheng Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent advancements in cloud services, Internet of Things (IoT) and Cellular networks have made cloud computing an attractive option for intelligent traffic signal control (ITSC). Such a method significantly reduces the cost of cables, installation, number of devices used, and maintenance. ITSC systems based on cloud computing lower the cost of the ITSC systems and make it possible to scale the system by utilizing the existing powerful cloud platforms. While such systems have significant potential, one of the critical problems that should be addressed is the network delay. It is well known that network delay in message propagation is hard to prevent, which could potentially degrade the performance of the system or even create safety issues for vehicles at intersections. In this paper, we introduce a new traffic signal control algorithm based on reinforcement learning, which performs well even under severe network delay. The framework introduced in this paper can be helpful for all agent-based systems using remote computing resources where network delay could be a critical concern. Extensive simulation results obtained for different scenarios show the viability of the designed algorithm to cope with network delay.



قيم البحث

اقرأ أيضاً

Partially Detected Intelligent Traffic Signal Control (PD-ITSC) systems that can optimize traffic signals based on limited detected information could be a cost-efficient solution for mitigating traffic congestion in the future. In this paper, we focu s on a particular problem in PD-ITSC - adaptation to changing environments. To this end, we investigate different reinforcement learning algorithms, including Q-learning, Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), and Actor-Critic with Kronecker-Factored Trust Region (ACKTR). Our findings suggest that RL algorithms can find optimal strategies under partial vehicle detection; however, policy-based algorithms can adapt to changing environments more efficiently than value-based algorithms. We use these findings to draw conclusions about the value of different models for PD-ITSC systems.
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy. Reinforcement learning (RL) is a trending data-driven approach for adaptive traffic signal control in complex urban traffic networ ks. Although the development of deep neural networks (DNN) further enhances its learning capability, there are still some challenges in applying deep RLs to transportation networks with multiple signalized intersections, including non-stationarity environment, exploration-exploitation dilemma, multi-agent training schemes, continuous action spaces, etc. In order to address these issues, this paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms. MADDPG has a centralized learning and decentralized execution paradigm in which critics use additional information to streamline the training process, while actors act on their own local observations. The model is evaluated via simulation on the Simulation of Urban MObility (SUMO) platform. Model comparison results show the efficiency of the proposed algorithm in controlling traffic lights.
Intelligent signal processing for wireless communications is a vital task in modern wireless systems, but it faces new challenges because of network heterogeneity, diverse service requirements, a massive number of connections, and various radio chara cteristics. Owing to recent advancements in big data and computing technologies, artificial intelligence (AI) has become a useful tool for radio signal processing and has enabled the realization of intelligent radio signal processing. This survey covers four intelligent signal processing topics for the wireless physical layer, including modulation classification, signal detection, beamforming, and channel estimation. In particular, each theme is presented in a dedicated section, starting with the most fundamental principles, followed by a review of up-to-date studies and a summary. To provide the necessary background, we first present a brief overview of AI techniques such as machine learning, deep learning, and federated learning. Finally, we highlight a number of research challenges and future directions in the area of intelligent radio signal processing. We expect this survey to be a good source of information for anyone interested in intelligent radio signal processing, and the perspectives we provide therein will stimulate many more novel ideas and contributions in the future.
An intelligent optical performance monitor using multi-task learning based artificial neural network (MTL-ANN) is designed for simultaneous OSNR monitoring and modulation format identification (MFI). Signals amplitude histograms (AHs) after constant module algorithm are selected as the input features for MTL-ANN. The experimental results of 20-Gbaud NRZ-OOK, PAM4 and PAM8 signals demonstrate that MTL-ANN could achieve OSNR monitoring and MFI simultaneously with higher accuracy and stability compared with single-task learning based ANNs (STL-ANNs). The results show an MFI accuracy of 100% and OSNR monitoring root-mean-square error of 0.63 dB for the three modulation formats under consideration. Furthermore, the number of neuron needed for the single MTL-ANN is almost the half of STL-ANN, which enables reduced-complexity optical performance monitoring devices for real-time performance monitoring.
244 - Libing Wu , Min Wang , Dan Wu 2021
Adaptive traffic signal control plays a significant role in the construction of smart cities. This task is challenging because of many essential factors, such as cooperation among neighboring intersections and dynamic traffic scenarios. First, to fac ilitate cooperation of traffic signals, existing work adopts graph neural networks to incorporate the temporal and spatial influences of the surrounding intersections into the target intersection, where spatial-temporal information is used separately. However, one drawback of these methods is that the spatial-temporal correlations are not adequately exploited to obtain a better control scheme. Second, in a dynamic traffic environment, the historical state of the intersection is also critical for predicting future signal switching. Previous work mainly solves this problem using the current intersections state, neglecting the fact that traffic flow is continuously changing both spatially and temporally and does not handle the historical state. In this paper, we propose a novel neural network framework named DynSTGAT, which integrates dynamic historical state into a new spatial-temporal graph attention network to address the above two problems. More specifically, our DynSTGAT model employs a novel multi-head graph attention mechanism, which aims to adequately exploit the joint relations of spatial-temporal information. Then, to efficiently utilize the historical state information of the intersection, we design a sequence model with the temporal convolutional network (TCN) to capture the historical information and further merge it with the spatial information to improve its performance. Extensive experiments conducted in the multi-intersection scenario on synthetic data and real-world data confirm that our method can achieve superior performance in travel time and throughput against the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا