ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent optical performance monitor using multi-task learning based artificial neural network

283   0   0.0 ( 0 )
 نشر من قبل Zhiquan Wan
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

An intelligent optical performance monitor using multi-task learning based artificial neural network (MTL-ANN) is designed for simultaneous OSNR monitoring and modulation format identification (MFI). Signals amplitude histograms (AHs) after constant module algorithm are selected as the input features for MTL-ANN. The experimental results of 20-Gbaud NRZ-OOK, PAM4 and PAM8 signals demonstrate that MTL-ANN could achieve OSNR monitoring and MFI simultaneously with higher accuracy and stability compared with single-task learning based ANNs (STL-ANNs). The results show an MFI accuracy of 100% and OSNR monitoring root-mean-square error of 0.63 dB for the three modulation formats under consideration. Furthermore, the number of neuron needed for the single MTL-ANN is almost the half of STL-ANN, which enables reduced-complexity optical performance monitoring devices for real-time performance monitoring.



قيم البحث

اقرأ أيضاً

Ischemic heart disease (IHD), particularly in its chronic stable form, is a subtle pathology due to its silent behavior before developing in unstable angina, myocardial infarction or sudden cardiac death. Machine learning techniques applied to parame ters extracted form heart rate variability (HRV) signal seem to be a valuable support in the early diagnosis of some cardiac diseases. However, so far, IHD patients were identified using Artificial Neural Networks (ANNs) applied to a limited number of HRV parameters and only to very few subjects. In this study, we used several linear and non-linear HRV parameters applied to ANNs, in order to confirm these results on a large cohort of 965 sample of subjects and to identify which features could discriminate IHD patients with high accuracy. By using principal component analysis and stepwise regression, we reduced the original 17 parameters to five, used as inputs, for a series of ANNs. The highest accuracy of 82% was achieved using meanRR, LFn, SD1, gender and age parameters and two hidden neurons.
We propose a convolutional-recurrent channel equalizer and experimentally demonstrate 1dB Q-factor improvement both in single-channel and 96 x WDM, DP-16QAM transmission over 450km of TWC fiber. The new equalizer outperforms previous NN-based approaches and a 3-steps-per-span DBP.
We propose a multi task learning-based neural model for resolving bridging references tackling two key challenges. The first challenge is the lack of large corpora annotated with bridging references. To address this, we use multi-task learning to hel p bridging reference resolution with coreference resolution. We show that substantial improvements of up to 8 p.p. can be achieved on full bridging resolution with this architecture. The second challenge is the different definitions of bridging used in different corpora, meaning that hand-coded systems or systems using special features designed for one corpus do not work well with other corpora. Our neural model only uses a small number of corpus independent features, thus can be applied to different corpora. Evaluations with very different bridging corpora (ARRAU, ISNOTES, BASHI and SCICORP) suggest that our architecture works equally well on all corpora, and achieves the SoTA results on full bridging resolution for all corpora, outperforming the best reported results by up to 36.3 p.p..
Many researchers have studied student academic performance in supervised and unsupervised learning using numerous data mining techniques. Neural networks often need a greater collection of observations to achieve enough predictive ability. Due to the increase in the rate of poor graduates, it is necessary to design a system that helps to reduce this menace as well as reduce the incidence of students having to repeat due to poor performance or having to drop out of school altogether in the middle of the pursuit of their career. It is therefore necessary to study each one as well as their advantages and disadvantages, so as to determine which is more efficient in and in what case one should be preferred over the other. The study aims to develop a system to predict student performance with Artificial Neutral Network using the student demographic traits so as to assist the university in selecting candidates (students) with a high prediction of success for admission using previous academic records of students granted admissions which will eventually lead to quality graduates of the institution. The model was developed based on certain selected variables as the input. It achieved an accuracy of over 92.3 percent, showing Artificial Neural Network potential effectiveness as a predictive tool and a selection criterion for candidates seeking admission to a university.
321 - Kairan Sun , Xu Wei , Gengtao Jia 2015
Faced with continuously increasing scale of data, original back-propagation neural network based machine learning algorithm presents two non-trivial challenges: huge amount of data makes it difficult to maintain both efficiency and accuracy; redundan t data aggravates the system workload. This project is mainly focused on the solution to the issues above, combining deep learning algorithm with cloud computing platform to deal with large-scale data. A MapReduce-based handwriting character recognizer will be designed in this project to verify the efficiency improvement this mechanism will achieve on training and practical large-scale data. Careful discussion and experiment will be developed to illustrate how deep learning algorithm works to train handwritten digits data, how MapReduce is implemented on deep learning neural network, and why this combination accelerates computation. Besides performance, the scalability and robustness will be mentioned in this report as well. Our system comes with two demonstration software that visually illustrates our handwritten digit recognition/encoding application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا