ﻻ يوجد ملخص باللغة العربية
As a natural generalization of line graphs, Hoffman line graphs were defined by Woo and Neumaier. Especially, Hoffman line graphs are closely related to the smallest eigenvalue of graphs, and the uniqueness of strict covers of a Hoffman line graph plays a key role in such a study. In this paper, we prove a theorem for the uniqueness of strict covers under a condition which can be checked in finite time. Our result gives a generalization and a short proof for the main part of [Ars Math.~Contemp. textbf{1} (2008) 81--98].
We solve a problem posed by Cardinali and Sastry [2] about factorization of $2$-covers of finite classical generalized quadrangles. To that end, we develop a general theory of cover factorization for generalized quadrangles, and in particular we stud
In this paper, which is a sequel to cite{part1}, we proceed with our study of covers and decomposition laws for geometries related to generalized quadrangles. In particular, we obtain a higher decomposition law for all Kantor-Knuth generalized quadra
This paper disproves a conjecture of Wang, Wu, Yan and Xie, and answers in negative a question in Dvorak, Pekarek and Sereni. In return, we pose five open problems.
The r-th power of a graph modifies a graph by connecting every vertex pair within distance r. This paper gives a generalization of the Alon-Boppana Theorem for the r-th power of graphs, including irregular graphs. This leads to a generalized notion o
It is proved that if a graph is regular of even degree and contains a Hamilton cycle, or regular of odd degree and contains a Hamiltonian $3$-factor, then its line graph is Hamilton decomposable. This result partially extends Kotzigs result that a $3