ترغب بنشر مسار تعليمي؟ اضغط هنا

Covers of generalized quadrangles

210   0   0.0 ( 0 )
 نشر من قبل Koen Thas
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve a problem posed by Cardinali and Sastry [2] about factorization of $2$-covers of finite classical generalized quadrangles. To that end, we develop a general theory of cover factorization for generalized quadrangles, and in particular we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semipartial geometries coming from $theta$-covers, and consider related problems.



قيم البحث

اقرأ أيضاً

55 - J. A. Thas , K. Thas 2020
In this paper, which is a sequel to cite{part1}, we proceed with our study of covers and decomposition laws for geometries related to generalized quadrangles. In particular, we obtain a higher decomposition law for all Kantor-Knuth generalized quadra ngles which generalizes one of the main results in cite{part1}. In a second part of the paper, we study the set of all Kantor-Knuth ovoids (with given parameter) in a fixed finite parabolic quadrangle, and relate this set to embeddings of parabolic quadrangles into Kantor-Knuth quadrangles. This point of view gives rise to an answer of a question posed in cite{JATSEP}.
113 - K. Thas 2020
We settle a question posed by G. Eric Moorhouse on the model theory and existence of locally finite generalized quadrangles. In this paper, we completely handle the case in which the generalized quadrangles have a countable number of elements.
As a natural generalization of line graphs, Hoffman line graphs were defined by Woo and Neumaier. Especially, Hoffman line graphs are closely related to the smallest eigenvalue of graphs, and the uniqueness of strict covers of a Hoffman line graph pl ays a key role in such a study. In this paper, we prove a theorem for the uniqueness of strict covers under a condition which can be checked in finite time. Our result gives a generalization and a short proof for the main part of [Ars Math.~Contemp. textbf{1} (2008) 81--98].
Veldkamp polygons are certain graphs $Gamma=(V,E)$ such that for each $vin V$, $Gamma_v$ is endowed with a symmetric anti-reflexive relation $equiv_v$. These relations are all trivial if and only if $Gamma$ is a thick generalized polygon. A Veldkamp polygon is called flat if no two vertices have the same set of vertices that are opposite in a natural sense. We explore the connection between Veldkamp quadrangles and polar spaces. Using this connection, we give the complete classification of flat Veldkamp quadrangles in which some but not all of the relations $equiv_v$ are trivial.
146 - Nikolaus Witte 2008
Branched covers are applied frequently in topology - most prominently in the construction of closed oriented PL d-manifolds. In particular, strong bounds for the number of sheets and the topology of the branching set are known for dimension d<=4. On the other hand, Izmestiev and Joswig described how to obtain a simplicial covering space (the partial unfolding) of a given simplicial complex, thus obtaining a simplicial branched cover [Adv. Geom. 3(2):191-255, 2003]. We present a large class of branched covers which can be constructed via the partial unfolding. In particular, for d<=4 every closed oriented PL d-manifold is the partial unfolding of some polytopal d-sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا