ﻻ يوجد ملخص باللغة العربية
We solve a problem posed by Cardinali and Sastry [2] about factorization of $2$-covers of finite classical generalized quadrangles. To that end, we develop a general theory of cover factorization for generalized quadrangles, and in particular we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semipartial geometries coming from $theta$-covers, and consider related problems.
In this paper, which is a sequel to cite{part1}, we proceed with our study of covers and decomposition laws for geometries related to generalized quadrangles. In particular, we obtain a higher decomposition law for all Kantor-Knuth generalized quadra
We settle a question posed by G. Eric Moorhouse on the model theory and existence of locally finite generalized quadrangles. In this paper, we completely handle the case in which the generalized quadrangles have a countable number of elements.
As a natural generalization of line graphs, Hoffman line graphs were defined by Woo and Neumaier. Especially, Hoffman line graphs are closely related to the smallest eigenvalue of graphs, and the uniqueness of strict covers of a Hoffman line graph pl
Veldkamp polygons are certain graphs $Gamma=(V,E)$ such that for each $vin V$, $Gamma_v$ is endowed with a symmetric anti-reflexive relation $equiv_v$. These relations are all trivial if and only if $Gamma$ is a thick generalized polygon. A Veldkamp
Branched covers are applied frequently in topology - most prominently in the construction of closed oriented PL d-manifolds. In particular, strong bounds for the number of sheets and the topology of the branching set are known for dimension d<=4. On