ﻻ يوجد ملخص باللغة العربية
The locality of a graph problem is the smallest distance $T$ such that each node can choose its own part of the solution based on its radius-$T$ neighborhood. In many settings, a graph problem can be solved efficiently with a distributed or parallel algorithm if and only if it has a small locality. In this work we seek to automate the study of solvability and locality: given the description of a graph problem $Pi$, we would like to determine if $Pi$ is solvable and what is the asymptotic locality of $Pi$ as a function of the size of the graph. Put otherwise, we seek to automatically synthesize efficient distributed and parallel algorithms for solving $Pi$. We focus on locally checkable graph problems; these are problems in which a solution is globally feasible if it looks feasible in all constant-radius neighborhoods. Prior work on such problems has brought primarily bad news: questions related to locality are undecidable in general, and even if we focus on the case of labeled paths and cycles, determining locality is $mathsf{PSPACE}$-hard (Balliu et al., PODC 2019). We complement prior negative results with efficient algorithms for the cases of unlabeled paths and cycles and, as an extension, for rooted trees. We introduce a new automata-theoretic perspective for studying locally checkable graph problems. We represent a locally checkable problem $Pi$ as a nondeterministic finite automaton $mathcal{M}$ over a unary alphabet. We identify polynomial-time-computable properties of the automaton $mathcal{M}$ that near-completely capture the solvability and locality of $Pi$ in cycles and paths, with the exception of one specific case that is $mbox{co-$mathsf{NP}$}$-complete.
We present a complete classification of the deterministic distributed time complexity for a family of graph problems: binary labeling problems in trees. These are locally checkable problems that can be encoded with an alphabet of size two in the edge
For which sets A does there exist a mapping, computed by a total or partial recursive function, such that the mapping, when its domain is restricted to A, is a 1-to-1, onto mapping to $Sigma^*$? And for which sets A does there exist such a mapping th
We solve some decision problems for timed automata which were recently raised by S. Tripakis in [ Folk Theorems on the Determinization and Minimization of Timed Automata, in the Proceedings of the International Workshop FORMATS2003, LNCS, Volume 2791
We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakl
LCLs or locally checkable labelling problems (e.g. maximal independent set, maximal matching, and vertex colouring) in the LOCAL model of computation are very well-understood in cycles (toroidal 1-dimensional grids): every problem has a complexity of