ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed graph problems through an automata-theoretic lens

244   0   0.0 ( 0 )
 نشر من قبل Jan Studen\\'y
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The locality of a graph problem is the smallest distance $T$ such that each node can choose its own part of the solution based on its radius-$T$ neighborhood. In many settings, a graph problem can be solved efficiently with a distributed or parallel algorithm if and only if it has a small locality. In this work we seek to automate the study of solvability and locality: given the description of a graph problem $Pi$, we would like to determine if $Pi$ is solvable and what is the asymptotic locality of $Pi$ as a function of the size of the graph. Put otherwise, we seek to automatically synthesize efficient distributed and parallel algorithms for solving $Pi$. We focus on locally checkable graph problems; these are problems in which a solution is globally feasible if it looks feasible in all constant-radius neighborhoods. Prior work on such problems has brought primarily bad news: questions related to locality are undecidable in general, and even if we focus on the case of labeled paths and cycles, determining locality is $mathsf{PSPACE}$-hard (Balliu et al., PODC 2019). We complement prior negative results with efficient algorithms for the cases of unlabeled paths and cycles and, as an extension, for rooted trees. We introduce a new automata-theoretic perspective for studying locally checkable graph problems. We represent a locally checkable problem $Pi$ as a nondeterministic finite automaton $mathcal{M}$ over a unary alphabet. We identify polynomial-time-computable properties of the automaton $mathcal{M}$ that near-completely capture the solvability and locality of $Pi$ in cycles and paths, with the exception of one specific case that is $mbox{co-$mathsf{NP}$}$-complete.



قيم البحث

اقرأ أيضاً

We present a complete classification of the deterministic distributed time complexity for a family of graph problems: binary labeling problems in trees. These are locally checkable problems that can be encoded with an alphabet of size two in the edge labeling formalism. Examples of binary labeling problems include sinkless orientation, sinkless and sourceless orientation, 2-vertex coloring, perfect matching, and the task of coloring edges red and blue such that all nodes are incident to at least one red and at least one blue edge. More generally, we can encode e.g. any cardinality constraints on indegrees and outdegrees. We study the deterministic time complexity of solving a given binary labeling problem in trees, in the usual LOCAL model of distributed computing. We show that the complexity of any such problem is in one of the following classes: $O(1)$, $Theta(log n)$, $Theta(n)$, or unsolvable. In particular, a problem that can be represented in the binary labeling formalism cannot have time complexity $Theta(log^* n)$, and hence we know that e.g. any encoding of maximal matchings has to use at least three labels (which is tight). Furthermore, given the description of any binary labeling problem, we can easily determine in which of the four classes it is and what is an asymptotically optimal algorithm for solving it. Hence the distributed time complexity of binary labeling problems is decidable, not only in principle, but also in practice: there is a simple and efficient algorithm that takes the description of a binary labeling problem and outputs its distributed time complexity.
For which sets A does there exist a mapping, computed by a total or partial recursive function, such that the mapping, when its domain is restricted to A, is a 1-to-1, onto mapping to $Sigma^*$? And for which sets A does there exist such a mapping th at respects the lexicographical ordering within A? Both cases are types of perfect, minimal hash functions. The complexity-theoret
139 - Olivier Finkel 2007
We solve some decision problems for timed automata which were recently raised by S. Tripakis in [ Folk Theorems on the Determinization and Minimization of Timed Automata, in the Proceedings of the International Workshop FORMATS2003, LNCS, Volume 2791 , p. 182-188, 2004 ] and by E. Asarin in [ Challenges in Timed Languages, From Applied Theory to Basic Theory, Bulletin of the EATCS, Volume 83, p. 106-120, 2004 ]. In particular, we show that one cannot decide whether a given timed automaton is determinizable or whether the complement of a timed regular language is timed regular. We show that the problem of the minimization of the number of clocks of a timed automaton is undecidable. It is also undecidable whether the shuffle of two timed regular languages is timed regular. We show that in the case of timed Buchi automata accepting infinite timed words some of these problems are Pi^1_1-hard, hence highly undecidable (located beyond the arithmetical hierarchy).
56 - Andrew Ryzhikov 2017
We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakl y acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.
LCLs or locally checkable labelling problems (e.g. maximal independent set, maximal matching, and vertex colouring) in the LOCAL model of computation are very well-understood in cycles (toroidal 1-dimensional grids): every problem has a complexity of $O(1)$, $Theta(log^* n)$, or $Theta(n)$, and the design of optimal algorithms can be fully automated. This work develops the complexity theory of LCL problems for toroidal 2-dimensional grids. The complexity classes are the same as in the 1-dimensional case: $O(1)$, $Theta(log^* n)$, and $Theta(n)$. However, given an LCL problem it is undecidable whether its complexity is $Theta(log^* n)$ or $Theta(n)$ in 2-dimensional grids. Nevertheless, if we correctly guess that the complexity of a problem is $Theta(log^* n)$, we can completely automate the design of optimal algorithms. For any problem we can find an algorithm that is of a normal form $A circ S_k$, where $A$ is a finite function, $S_k$ is an algorithm for finding a maximal independent set in $k$th power of the grid, and $k$ is a constant. Finally, partially with the help of automated design tools, we classify the complexity of several concrete LCL problems related to colourings and orientations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا