ﻻ يوجد ملخص باللغة العربية
We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an omega-language $L(A)$ accep
We study extremal and algorithmic questions of subset and careful synchronization in monotonic automata. We show that several synchronization problems that are hard in general automata can be solved in polynomial time in monotonic automata, even with
We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating beha
We approach the task of computing a carefully synchronizing word of optimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experiments demonstrate that this approach gives
In this note we study automata recognizing birecurrent sets. A set of words is birecurrent if the minimal partial DFA recognizing this set and the minimal partial DFA recognizing the reversal of this set are both strongly connected. This notion was i