ﻻ يوجد ملخص باللغة العربية
We continue the study of the bosonic $O(N)^3$ model with quartic interactions and long-range propagator. The symmetry group allows for three distinct invariant $phi^4$ composite operators, known as tetrahedron, pillow and double-trace. As shown in arXiv:1903.03578 and arXiv:1909.07767, the tetrahedron operator is exactly marginal in the large-$N$ limit and for a purely imaginary tetrahedron coupling a line of real infrared fixed points (parametrized by the absolute value of the tetrahedron coupling) is found for the other two couplings. These fixed points have real critical exponents and a real spectrum of bilinear operators, satisfying unitarity constraints. This raises the question whether at large-$N$ the model is unitary, despite the tetrahedron coupling being imaginary. In this paper, we first rederive the above results by a different regularization and renormalization scheme. We then discuss the operator mixing for composite operators and we give a perturbative proof of conformal invariance of the model at the infrared fixed points by adapting a similar proof from the long-range Ising model. At last, we identify the scaling operators at the fixed point and compute the two- and three-point functions of $phi^4$ and $phi^2$ composite operators. The correlations have the expected conformal behavior and the OPE coefficients are all real, reinforcing the claim that the large-$N$ CFT is unitary.
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary te
We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the
We develop a systematic approach to compute the subsystem trace distances and relative entropies for subsystem reduced density matrices associated to excited states in different symmetry sectors of a 1+1 dimensional conformal field theory having an i
We study the double scaling limit of the $O(N)^3$-invariant tensor model, initially introduced in Carrozza and Tanasa, Lett. Math. Phys. (2016). This model has an interacting part containing two types of quartic invariants, the tetrahedric and the pi
We explain some details of the construction of composite operators in N=4 SYM that we have elaborated earlier in the context of Lorentz harmonic chiral (LHC) superspace. We give a step-by-step elementary derivation and show that the result coincides