ترغب بنشر مسار تعليمي؟ اضغط هنا

Double scaling limit for the $O(N)^3$-invariant tensor model

165   0   0.0 ( 0 )
 نشر من قبل Victor Nador
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the double scaling limit of the $O(N)^3$-invariant tensor model, initially introduced in Carrozza and Tanasa, Lett. Math. Phys. (2016). This model has an interacting part containing two types of quartic invariants, the tetrahedric and the pillow one. For the 2-point function, we rewrite the sum over Feynman graphs at each order in the $1/N$ expansion as a emph{finite} sum, where the summand is a function of the generating series of melons and chains (a.k.a. ladders). The graphs which are the most singular in the continuum limit are characterized at each order in the $1/N$ expansion. This leads to a double scaling limit which picks up contributions from all orders in the $1/N$ expansion. In contrast with matrix models, but similarly to previous double scaling limits in tensor models, this double scaling limit is summable. The tools used in order to prove our results are combinatorial, namely a thorough diagrammatic analysis of Feynman graphs, as well as an analysis of the singularities of the relevant generating series.



قيم البحث

اقرأ أيضاً

75 - V. Bonzom , V. Nador , A. Tanasa 2019
Various tensor models have been recently shown to have the same properties as the celebrated Sachdev-Ye-Kitaev (SYK) model. In this paper we study in detail the diagrammatics of two such SYK-like tensor models: the multi-orientable (MO) model which h as an $U(N) times O(N) times U(N)$ symmetry and a quartic $O(N)^3$-invariant model whose interaction has the tetrahedral pattern. We show that the Feynman graphs of the MO model can be seen as the Feynman graphs of the $O(N)^3$-invariant model which have an orientable jacket. We then present a diagrammatic toolbox to analyze the $O(N)^3$-invariant graphs. This toolbox allows for a simple strategy to identify all the graphs of a given order in the $1/N$ expansion. We apply it to the next-to-next-to-leading and next-to-next-to-next-to-leading orders which are the graphs of degree $1$ and $3/2$ respectively.
Tensor models generalize matrix models and generate colored triangulations of pseudo-manifolds in dimensions $Dgeq 3$. The free energies of some models have been recently shown to admit a double scaling limit, i.e. large tensor size $N$ while tuning to criticality, which turns out to be summable in dimension less than six. This double scaling limit is here extended to arbitrary models. This is done by means of the Schwinger--Dyson equations, which generalize the loop equations of random matrix models, coupled to a double scale analysis of the cumulants.
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary te trahedral coupling constant, while one of them is not real in the case of a real coupling. We also discuss the operator spectrum of the free theory based on the character decomposition of the partition function.
A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical be havior in the O(4) universality class. For example, the finite-temperature phase transition in QCD with two flavors is expected to fall into this class. Critical exponents are calculated in local potential approximation. Parameterizations of the scaling functions for the order parameter and for the longitudinal susceptibility are given. Relations from universal scaling arguments between these scaling functions are investigated and confirmed. The expected asymptotic behavior of the scaling functions predicted by Griffiths is observed. Corrections to the scaling behavior at large values of the external field are studied qualitatively. These scaling corrections can become large, which might have implications for the scaling analysis of lattice QCD results.
We study dual strong coupling description of integrability-preserving deformation of the $O(N)$ sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions . We claim that both theories share the same integrable structure and coincide as quantum field theories. We construct a solution of Ricci flow equation which behaves in the UV as a free theory perturbed by graviton operators and show that it coincides with the metric of the $eta-$deformed $O(N)$ sigma-model after $T-$duality transformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا