ﻻ يوجد ملخص باللغة العربية
Laser-based angle-resolved photoemission spectroscopy (ARPES) and two-photon photoemission spectroscopy (2PPES) are employed to study the valence electronic structure of the Weyl semimetal candidate Td-WTe$_2$ along two high symmetry directions and for binding energies between $approx$ -1 eV and 5 eV. The experimental data show a good agreement with band structure calculations. Polarization dependent measurements provide furthermore information on initial and intermediate state symmetry properties with respect to the mirror plane of the Td structure of WTe$_2$.
Two-dimensional crystals of semimetallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few layer 1T-WTe$_2$ and of a quantum spin Hall state in monolayers
Combining Angle resolved photoelectron spectroscopy (ARPES) and a $mu$-focused Laser, we have performed scanning ARPES microscopy measurements of the domain population within the nematic phase of FeSe single crystals. We are able to demonstrate a var
The selective excitation of coherent phonons provides unique capabilities to control fundamental properties of quantum materials on ultrafast time scales. For instance, in the presence of strong electron-phonon coupling, the electronic band structure
The recent discovery of non-saturating giant positive magnetoresistance in Td-WTe2 has aroused great interest in this material. We have studied the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2 experimentally and the
The carrier dynamics and electronic structures of type-II Weyl semimetal candidates MoTe$_2$ and WTe$_2$ have been investigated by using temperature-dependent optical conductivity [$sigma(omega)$] spectra. Two kinds of Drude peaks (narrow and broad)