ﻻ يوجد ملخص باللغة العربية
Combining Angle resolved photoelectron spectroscopy (ARPES) and a $mu$-focused Laser, we have performed scanning ARPES microscopy measurements of the domain population within the nematic phase of FeSe single crystals. We are able to demonstrate a variation of the domain population density on a scale of a few 10 $mu$m while constraining the upper limit of the single domain size to less than 5 $mu m$. This experiment serves as a demonstration of how combining the advantages of high resolution Laser ARPES and an ultimate control over the spatial dimension can improve investigations of materials by reducing the cross contamination of spectral features of different domains.
Laser-based angle-resolved photoemission spectroscopy (ARPES) and two-photon photoemission spectroscopy (2PPES) are employed to study the valence electronic structure of the Weyl semimetal candidate Td-WTe$_2$ along two high symmetry directions and f
We present a detailed study of the spatial resolution of our time-resolved neutron imaging detector utilizing a new neutron position reconstruction method that improves both spatial resolution and event reconstruction efficiency. Our prototype detect
We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz-dependence. We find significant anisotropy of the
The structural and electronic properties of thermally reduced SrTiO3(100) single crystals have been investigated using a probe with real- and reciprocal-space sensitivity: a synchrotron radiation microsopic setup which offers the possibility of Scann
Two-dimensional crystals of semimetallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few layer 1T-WTe$_2$ and of a quantum spin Hall state in monolayers