ترغب بنشر مسار تعليمي؟ اضغط هنا

An Efficient Robust Approach to the Day-ahead Operation of an Aggregator of Electric Vehicles

104   0   0.0 ( 0 )
 نشر من قبل Juan M. Morales Dr.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The growing use of electric vehicles (EVs) may hinder their integration into the electricity system as well as their efficient operation due to the intrinsic stochasticity associated with their driving patterns. In this work, we assume a profit-maximizer EV-aggregator who participates in the day-ahead electricity market. The aggregator accounts for the technical aspects of each individual EV and the uncertainty in its driving patterns. We propose a hierarchical optimization approach to represent the decision-making of this aggregator. The upper level models the profit-maximizer aggregators decisions on the EV-fleet operation, while a series of lower-level problems computes the worst-case EV availability profiles in terms of battery draining and energy exchange with the market. Then, this problem can be equivalently transformed into a mixed-integer linear single-level equivalent given the totally unimodular character of the constraint matrices of the lower-level problems and their convexity. Finally, we thoroughly analyze the benefits of the hierarchical model compared to the results from stochastic and deterministic models.



قيم البحث

اقرأ أيضاً

We pose the aggregators problem as a bilevel model, where the upper level minimizes the total operation costs of the fleet of EVs, while each lower level minimizes the energy available to each vehicle for transportation given a certain charging plan. Thanks to the totally unimodular character of the constraint matrix in the lower-level problems, the model can be mathematically recast as a computationally efficient mixed-integer program that delivers charging schedules that are robust against the uncertain availability of the EVs. Finally, we use synthetic data from the National Household Travel Survey 2017 to analyze the behavior of the EV aggregator from both economic and technical viewpoints and compare it with the results from a deterministic approach.
We consider the scenario where $N$ utilities strategically bid for electricity in the day-ahead market and balance the mismatch between the committed supply and actual demand in the real-time market, with uncertainty in demand and local renewable gen eration in consideration. We model the interactions among utilities as a non-cooperative game, in which each utility aims at minimizing its per-unit electricity cost. We investigate utilities optimal bidding strategies and show that all utilities bidding according to (net load) prediction is a unique pure strategy Nash Equilibrium with two salient properties. First, it incurs no loss of efficiency; hence, competition among utilities does not increase the social cost. Second, it is robust and (0, $N-1$) fault immune. That is, fault behaviors of irrational utilities only help to reduce other rational utilities costs. The expected market supply-demand mismatch is minimized simultaneously, which improves the planning and supply-and-demand matching efficiency of the electricity supply chain. We prove the results hold under the settings of correlated prediction errors and a general class of real-time spot pricing models, which capture the relationship between the spot price, the day-ahead clearing price, and the market-level mismatch. Simulations based on real-world traces corroborate our theoretical findings. Our study adds new insights to market mechanism design. In particular, we derive a set of fairly general sufficient conditions for the market operator to design real-time pricing schemes so that the interactions among utilities admit the desired equilibrium.
147 - Zhe Yu , Yunjian Xu , Lang Tong 2016
The successful launch of electric vehicles (EVs) depends critically on the availability of convenient and economic charging facilities. The problem of scheduling of large-scale charging of EVs by a service provider is considered. A Markov decision pr ocess model is introduced in which EVs arrive randomly at a charging facility with random demand and completion deadlines. The service provider faces random charging costs, convex non-completion penalties, and a peak power constraint that limits the maximum number of simultaneous activation of EV chargers. Formulated as a restless multi-armed bandit problem, the EV charging problem is shown to be indexable. A closed-form expression of the Whittles index is obtained for the case when the charging costs are constant. The Whittles index policy, however, is not optimal in general. An enhancement of the Whittles index policy based on spatial interchange according to the less laxity and longer processing time principle is presented. The proposed policy outperforms existing charging algorithms, especially when the charging costs are time varying.
As the popularity of electric vehicles increases, the demand for more power can increase more rapidly than our ability to install additional generating capacity. In the long term we expect that the supply and demand will become balanced. However, in the interim the rate at which electric vehicles can be deployed will depend on our ability to charge these vehicles without inconveniencing their owners. In this paper, we investigate using fairness mechanisms to distribute power to electric vehicles on a smart grid. We assume that during peak demand there is insufficient power to charge all the vehicles simultaneously. In each five minute interval of time we select a subset of the vehicles to charge, based upon information about the vehicles. We evaluate the selection mechanisms using published data on the current demand for electric power as a function of time of day, current driving habits for commuting, and the current rates at which electric vehicles can be charged on home outlets. We found that conventional selection strategies, such as first-come-first-served or round robin, may delay a significant fraction of the vehicles by more than two hours, even when the total available power over the course of a day is two or three times the power required by the vehicles. However, a selection mechanism that minimizes the maximum delay can reduce the delays to a few minutes, even when the capacity available for charging electric vehicles exceeds their requirements by as little as 5%.
The widespread diffusion of distributed energy resources, especially those based on renewable energy, and energy storage devices has deeply modified power systems. As a consequence, demand response, the ability of customers to respond to regulating s ignals, has moved from large high-voltage and medium-voltage end-users to small, low-voltage, customers. In order to be effective, the participation to demand response of such small players must be gathered by aggregators. The role and the business models of these new entities have been studied in literature from a variety of viewpoints. Demand response can be clearly applied by sending a dedicated price signal to customers, but this methodology cannot obtain a diverse, punctual, predictable, and reliable response. These characteristics can be achieved by directly controlling the loads units. This approach involves communication problems and technological readiness. This paper proposes a fully decentralized mixed integer linear programming approach for demand response. In this framework, each load unit performs an optimization, subject to technical and user-based constraints, and gives to the aggregator a desired profile along with a reserve, which is guaranteed to comply with the constraints. In this way, the aggregator can trade the reserve coming from several load units, being the only interface to the market. Upon request, then, the aggregator communicates to the load units the modifications to their desired profiles without either knowing or caring how this modification would be accomplished. The effectiveness is simulated on 200 realistic load units.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا