ﻻ يوجد ملخص باللغة العربية
Optical trapping and manipulation using laser beams play a key role in many areas including biology, atomic science, and nanofabrication. Here, we propose and experimentally demonstrate the first use of a vortex-pair beam in optical trapping and manipulation. We successfully trap two spherical microparticles simultaneously by a single vortex-pair beam. Precisely position-controllable manipulation of the trapped spherical microparticles is realized by adjusting the off-axis distance of the vortices on the initial phase plane of the vortex-pair beam. Based on the feature of the vortex-pair beam, as an optical wrench, the high-precision angular-controllable rotation of the cylindrical microrod is achieved by rotating the initial phase structure. Our result provides a rich control on the trapping of microparticles and has greatly important applications in biological area, and optically driven micromachines or motors.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polar
Far-field slit-diffraction of circular optical-vortex (OV) beams is efficient for measurement of the topological charge (TC) magnitude but does not reveal its sign. We show that this is because in the common diffraction schemes the diffraction plane
We present the theoretical basis for and experimental verification of arbitrary single-qubit state generation, using the polarization of photons generated via spontaneous parametric downconversion. Our precision measurement and state reconstruction s
Recent advances in nanotechnologies have prompted the need for tools to accurately and non invasively manipulate individual nanoobjects. Among the possible strategies, optical forces have been widely used to enable nano optical tweezers capable of tr
Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and can exert forces several orders of magnitude l