ترغب بنشر مسار تعليمي؟ اضغط هنا

Cell selective manipulation with single beam acoustical tweezers

99   0   0.0 ( 0 )
 نشر من قبل Michael Baudoin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael Baudoin




اسأل ChatGPT حول البحث

Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and can exert forces several orders of magnitude larger than their optical counterpart at equivalent wave power. Yet, these tremendous perspectives have so far been hindered by the absence of selectivity of existing acoustical tweezers -- i.e., the ability to select and move objects individually -- and/or their limited resolution restricting their use to large particle manipulation only. Here, we report precise selective contactless manipulation and positioning of human cells in a standard microscopy environment, without altering their viability. Trapping forces of up to $sim$ 200 pN are reported with less than 2 mW of driving power. The unprecedented selectivity, miniaturization and trapping force are achieved by combining holography with active materials and fabrication techniques derived from the semi-conductor industry to synthesize specific wavefields (called focused acoustical vortices) designed to produce stiff localized traps. We anticipate this work to be a starting point toward widespread applications of acoustical tweezers in fields as diverse as tissue engineering, cell mechano-transduction analysis, neural network study or mobile microorganisms imaging, for which precise manipulation and/or controlled application of stresses is mandatory.



قيم البحث

اقرأ أيضاً

78 - Michael Baudoin 2018
Acoustical tweezers based on focalized acoustical vortices hold the promise of precise contactless 3D manipulation of millimeter down to sub-micrometer particles, microorganisms and cells with unprecedented combined selectivity and trapping force. Ye t, the widespread dissemination of this technology has been hindered by severe limitations of current systems in terms of performance and/or miniaturization and integrability. In this paper, we unleash the potential of focalized acoustical vortices by developing the first flat, compact, single-electrodes focalized acoustical tweezers. These tweezers rely on holographic Archimedes-Fermat spiraling transducers obtained by folding a spherical acoustical vortex on a flat piezoelectric substrate. We demonstrate the ability of these tweezers to grab and displace micrometric objects in a standard microfluidic environment with unique selectivity. The simplicity of this system and its scalability to higher frequencies opens tremendous perspectives in microbiology, microrobotics and microscopy.
The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focus ed transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices.
Magnetic resonance imaging (MRI) is a non-invasive and label-free technique widely used in medical diagnosis and life science research, and its success has benefited greatly from continuing efforts on enhancing contrast and resolution. Here we report ed nanoscale MRI in a single cell using an atomic-size quantum sensor. With nitrogen-vacancy center in diamond, the intracellular protein ferritin has been imaged with a spatial resolution of ~ 10 nanometers, and ferritin-containing organelles were co-localized by correlative MRI and electron microscopy. Comparing to the current micrometer resolution in current state-of-art conventional MRI, our approach represents a 100-fold enhancement, and paves the way for MRI of intracellular proteins.
Optical trapping and manipulation using laser beams play a key role in many areas including biology, atomic science, and nanofabrication. Here, we propose and experimentally demonstrate the first use of a vortex-pair beam in optical trapping and mani pulation. We successfully trap two spherical microparticles simultaneously by a single vortex-pair beam. Precisely position-controllable manipulation of the trapped spherical microparticles is realized by adjusting the off-axis distance of the vortices on the initial phase plane of the vortex-pair beam. Based on the feature of the vortex-pair beam, as an optical wrench, the high-precision angular-controllable rotation of the cylindrical microrod is achieved by rotating the initial phase structure. Our result provides a rich control on the trapping of microparticles and has greatly important applications in biological area, and optically driven micromachines or motors.
The size of particles which can be trapped in optical tweezers ranges from tens of nanometres to tens of micrometres. This size regime also includes large single molecules. Here we present experiments demonstrating that optical tweezers can be used t o collect polyethylene oxide (PEO) molecules suspended in water. The molecules that accumulate in the focal volume do not aggregate and therefore represent a region of increased molecule concentration, which can be controlled by the trapping potential. We also present a model which relates the change in concentration to the trapping potential. Since many protein molecules have molecular weights for which this method is applicable the effect may be useful in assisting nucleation of protein crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا