ﻻ يوجد ملخص باللغة العربية
Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and can exert forces several orders of magnitude larger than their optical counterpart at equivalent wave power. Yet, these tremendous perspectives have so far been hindered by the absence of selectivity of existing acoustical tweezers -- i.e., the ability to select and move objects individually -- and/or their limited resolution restricting their use to large particle manipulation only. Here, we report precise selective contactless manipulation and positioning of human cells in a standard microscopy environment, without altering their viability. Trapping forces of up to $sim$ 200 pN are reported with less than 2 mW of driving power. The unprecedented selectivity, miniaturization and trapping force are achieved by combining holography with active materials and fabrication techniques derived from the semi-conductor industry to synthesize specific wavefields (called focused acoustical vortices) designed to produce stiff localized traps. We anticipate this work to be a starting point toward widespread applications of acoustical tweezers in fields as diverse as tissue engineering, cell mechano-transduction analysis, neural network study or mobile microorganisms imaging, for which precise manipulation and/or controlled application of stresses is mandatory.
Acoustical tweezers based on focalized acoustical vortices hold the promise of precise contactless 3D manipulation of millimeter down to sub-micrometer particles, microorganisms and cells with unprecedented combined selectivity and trapping force. Ye
The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focus
Magnetic resonance imaging (MRI) is a non-invasive and label-free technique widely used in medical diagnosis and life science research, and its success has benefited greatly from continuing efforts on enhancing contrast and resolution. Here we report
Optical trapping and manipulation using laser beams play a key role in many areas including biology, atomic science, and nanofabrication. Here, we propose and experimentally demonstrate the first use of a vortex-pair beam in optical trapping and mani
The size of particles which can be trapped in optical tweezers ranges from tens of nanometres to tens of micrometres. This size regime also includes large single molecules. Here we present experiments demonstrating that optical tweezers can be used t