ﻻ يوجد ملخص باللغة العربية
Combining cosmic microwave background (CMB) data from Planck satellite data, Baryon Acoustic Oscillations (BAO) measurements and Type Ia supernovae (SNe Ia) data, we obtain the bounds on total neutrino masses $M_ u$ with the approximation of degenerate neutrino masses and for three dark energy models: the cosmological constant ($Lambda$CDM) model, a phenomenological emergent dark energy (PEDE) model and a model-independent quintessential parameterization (HBK). The bounds on the sum of neutrino masses $M_ u$ depend on the dark energy (DE) models. In the HBK model, we confirm the conclusion from some previous work that the quintessence prior of dark energy tends to tighten the cosmological constraint on $M_ u$. On the other hand, the PEDE model leads to larger $M_ u$ and a nonzero lower bound. Besides, we also explore the correlation between three different neutrino hierarchies and dark energy models.
In this work we update the bounds on $sum m_{ u}$ from latest publicly available cosmological data and likelihoods using Bayesian analysis, while explicitly considering particular neutrino mass hierarchies. In the minimal $Lambdatextrm{CDM}+sum m_{ u
In this paper, we make a comparison for the impacts of smooth dynamical dark energy, modified gravity, and interacting dark energy on the cosmological constraints on the total mass of active neutrinos. For definiteness, we consider the $Lambda$CDM mo
The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constr
As weak lensing surveys become deeper, they reveal more non-Gaussian aspects of the convergence field which can only be extracted using statistics beyond the power spectrum. In Cheng et al. (2020) we showed that the scattering transform, a novel stat
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function,