ﻻ يوجد ملخص باللغة العربية
As weak lensing surveys become deeper, they reveal more non-Gaussian aspects of the convergence field which can only be extracted using statistics beyond the power spectrum. In Cheng et al. (2020) we showed that the scattering transform, a novel statistic borrowing mathematical concepts from convolutional neural networks, is a powerful tool for cosmological parameter estimation in the non-Gaussian regime. Here, we extend that analysis to explore its sensitivity to dark energy and neutrino mass parameters with weak lensing surveys. We first use image synthesis to show visually that, compared to the power spectrum and bispectrum, the scattering transform provides a better statistical vocabulary to characterize the perceptual properties of lensing mass maps. We then show that it is also better suited for parameter inference: (i) it provides higher sensitivity in the noiseless regime, and (ii) at the noise level of Rubin-like surveys, though the constraints are not significantly tighter than those of the bispectrum, the scattering coefficients have a more Gaussian sampling distribution, which is an important property for likelihood parametrization and accurate cosmological inference. We argue that the scattering coefficients are preferred statistics considering both constraining power and likelihood properties.
Weak gravitational lensing provides a sensitive probe of cosmology by measuring the mass distribution and the geometry of the low redshift universe. We show how an all-sky weak lensing tomographic survey can jointly constrain different sets of cosmol
We forecast and optimize the cosmological power of various weak-lensing aperture mass ($M_{rm ap}$) map statistics for future cosmic shear surveys, including peaks, voids, and the full distribution of pixels (1D $M_{rm ap}$). These alternative method
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $approx1,500 $deg$^2$, covering a comoving volume of $
We introduce a novel approach to reconstruct dark matter mass maps from weak gravitational lensing measurements. The cornerstone of the proposed method lies in a new modelling of the matter density field in the Universe as a mixture of two components
We present reconstructed convergence maps, textit{mass maps}, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground