ﻻ يوجد ملخص باللغة العربية
Corresponding to any $(m-1)$-tuple of semi-spectral measures on the unit circle, a weighted Dirichlet-type space is introduced and studied. We prove that the operator of multiplication by the coordinate function on these weighted Dirichlet-type spaces acts as an analytic $m$-isometry and satisfies a certain set of operator inequalities. Moreover, it is shown that an analytic $m$-isometry which satisfies this set of operator inequalities can be represented as an operator of multiplication by the coordinate function on a weighted Dirichlet-type space induced from an $(m-1)$-tuple of semi-spectral measures on the unit circle. This extends a result of Richter as well as of Olofsson on the class of analytic $2$-isometries. We also prove that all left invertible $m$-concave operators satisfying the aforementioned operator inequalities admit a Wold-type decomposition. This result serves as a key ingredient to our model theorem and also generalizes a result of Shimorin on a class of $3$-concave operators.
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose rest
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a
We characterize the (essentially) decreasing sequences of positive numbers $beta$ = ($beta$ n) for which all composition operators on H 2 ($beta$) are bounded, where H 2 ($beta$) is the space of analytic functions f in the unit disk such that $infty$
We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight syst