ﻻ يوجد ملخص باللغة العربية
Multiple-input multiple-output (MIMO) systems are required to communicate reliably at high spectral bands using a large number of antennas, while operating under strict power and cost constraints. In order to meet these constraints, future MIMO receivers are expected to operate with low resolution quantizers, namely, utilize a limited number of bits for representing their observed measurements, inherently distorting the digital representation of the acquired signals. The fact that MIMO receivers use their measurements for some task, such as symbol detection and channel estimation, other than recovering the underlying analog signal, indicates that the distortion induced by bit-constrained quantization can be reduced by designing the acquisition scheme in light of the system task, i.e., by {em task-based quantization}. In this work we survey the theory and design approaches to task-based quantization, presenting model-aware designs as well as data-driven implementations. Then, we show how one can implement a task-based bit-constrained MIMO receiver, presenting approaches ranging from conventional hybrid receiver architectures to structures exploiting the dynamic nature of metasurface antennas. This survey narrows the gap between theoretical task-based quantization and its implementation in practice, providing concrete algorithmic and hardware design principles for realizing task-based MIMO receivers.
Massive MIMO wireless FDD systems are often confronted by the challenge to efficiently obtain downlink channel state information (CSI). Previous works have demonstrated the potential in CSI encoding and recovery by take advantage of uplink/downlink r
Favorable propagation (FP) and channel hardening (CH) are desired properties in massive multiple-input multiple-output (MIMO) systems. To date, these properties have primarily been analyzed for classical textit{statistical} channel models, or textit{
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we
A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a par
Wireless communications is often subject to channel fading. Various statistical models have been proposed to capture the inherent randomness in fading, and conventional model-based receiver designs rely on accurate knowledge of this underlying distri