ﻻ يوجد ملخص باللغة العربية
Mel-frequency filter bank (MFB) based approaches have the advantage of learning speech compared to raw spectrum since MFB has less feature size. However, speech generator with MFB approaches require additional vocoder that needs a huge amount of computation expense for training process. The additional pre/post processing such as MFB and vocoder is not essential to convert real human speech to others. It is possible to only use the raw spectrum along with the phase to generate different style of voices with clear pronunciation. In this regard, we propose a fast and effective approach to convert realistic voices using raw spectrum in a parallel manner. Our transformer-based model architecture which does not have any CNN or RNN layers has shown the advantage of learning fast and solved the limitation of sequential computation of conventional RNN. In this paper, we introduce a vocoder-free end-to-end voice conversion method using transformer network. The presented conversion model can also be used in speaker adaptation for speech recognition. Our approach can convert the source voice to a target voice without using MFB and vocoder. We can get an adapted MFB for speech recognition by multiplying the converted magnitude with phase. We perform our voice conversion experiments on TIDIGITS dataset using the metrics such as naturalness, similarity, and clarity with mean opinion score, respectively.
Neural evaluation metrics derived for numerous speech generation tasks have recently attracted great attention. In this paper, we propose SVSNet, the first end-to-end neural network model to assess the speaker voice similarity between natural speech
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update
Robust voice activity detection (VAD) is a challenging task in low signal-to-noise (SNR) environments. Recent studies show that speech enhancement is helpful to VAD, but the performance improvement is limited. To address this issue, here we propose a
The Transformer self-attention network has recently shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire inpu
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral an