ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing axion dark matter with 21cm fluctuations from minihalos

85   0   0.0 ( 0 )
 نشر من قبل Kenji Kadota
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If the symmetry breaking inducing the axion occurs after the inflation, the large axion isocurvature perturbations can arise due to a different axion amplitude in each causally disconnected patch. This causes the enhancement of the small-scale density fluctuations which can significantly affect the evolution of structure formation. The epoch of the small halo formation becomes earlier and we estimate the abundance of those minihalos which can host the neutral hydrogen atoms to result in the 21cm fluctuation signals. We find that the future radio telescopes, such as the SKA, can put the axion mass bound of order $m_a gtrsim 10^{-13}$ eV for the simple temperature-independent axion mass model, and the bound can be extended to of order $m_a gtrsim 10^{-8}$eV for a temperature-dependent axion mass.



قيم البحث

اقرأ أيضاً

We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on the reionization history due to the suppression of small scale density perturbations in the early universe. This behavior depends strongly on the mass of the axion particle. Using numerical simulations of the brightness temperature field of neutral hydrogen over a large redshift range, we construct a suite of training data. This data is used to train a convolutional neural network that can build a connection between the spatial structures of the brightness temperature field and the input axion mass directly. We construct mock observations of the future Square Kilometer Array survey, SKA1-Low, and find that even in the presence of realistic noise and resolution constraints, the network is still able to predict the input axion mass. We find that the axion mass can be recovered over a wide mass range with a precision of approximately 20%, and as the whole DM contribution, the axion can be detected using SKA1-Low at 68% if the axion mass is $M_X<1.86 times10^{-20}$eV although this can decrease to $M_X<5.25 times10^{-21}$eV if we relax our assumptions on the astrophysical modeling by treating those astrophysical parameters as nuisance parameters.
We investigate future constraints on primordial local-type non-Gaussianity from 21 cm angular power spectrum from minihalos. We particularly focus on the trispectrum of primordial curvature perturbations which are characterized by the non-linearity p arameters $tau_{rm NL}$ and $g_{rm NL}$. We show that future measurements of minihalo 21 cm angular power spectrum can probe these non-linearity parameters with an unprecedented precision of $tau_{rm NL}sim30$ and $g_{rm NL}sim2times10^3$ for Square Kilometre Array (SKA) and $tau_{rm NL}sim0.6$ and $g_{rm NL}sim8times10^2$ for Fast Fourier Transform Telescope (FFTT). These levels of sensitivity would give significant implications for models of the inflationary Universe and the origin of cosmic density fluctuations.
Ultra-Light Axion-like Particle (ULAP) is motivated as one of the solutions to the small scale problems in astrophysics. When such a scalar particle oscillates with an $mathcal{O}(1)$ amplitude in a potential shallower than quadratic, it can form a l ocalized dense object, oscillon. Because of its longevity due to the approximate conservation of the adiabatic invariant, it can survive up to the recent universe as redshift $z sim mathcal{O}(10)$. The scale affected by these oscillons is determined by the ULAP mass $m$ and detectable by observations of 21cm line. In this paper, we examine the possibility to detect ULAP by 21cm line and find that the oscillon can enhance the signals of 21cm line observations when $m lesssim 10^{-19} {rm eV}$ and the fraction of ULAP to dark matter is much larger than $10^{-2}$ depending on the form of the potential.
Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in a background of oscillating axion-like particles (ALPs) with the standard $g_{agamma},a,F_{mu u}tilde F^{mu u}/4$ coupling to photons. This leads to birefringence or rotation of linear polarization by ALP dark matter. Cosmic microwave background (CMB) birefringence limits $Delta alpha lesssim (1.0)^circ$ enable us to constrain the axion-photon coupling $g_{agamma} lesssim 10^{-17}-10^{-12},{rm GeV}^{-1}$, for ultra-light ALP masses $m_a sim 10^{-27} - 10^{-24}$ eV. This improves upon previous axion-photon coupling limits by up to four orders of magnitude. Future CMB observations could tighten limits by another one to two orders.
We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnet ic fields generated are on the galactic scales $sim 10,{rm kpc}$ and have a magnitude of the order of $Bsim10^{-23},{rm G}$ today. The field has a greater magnitude than those generated from other mechanisms relying on second order perturbation theory, and is sufficient to provide a seed for battery mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا