ترغب بنشر مسار تعليمي؟ اضغط هنا

Mario Level Generation From Mechanics Using Scene Stitching

228   0   0.0 ( 0 )
 نشر من قبل Michael Green
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a level generation method for Super Mario by stitching together pre-generated scenes that contain specific mechanics, using mechanic-sequences from agent playthroughs as input specifications. Given a sequence of mechanics, our system uses an FI-2Pop algorithm and a corpus of scenes to perform automated level authoring. The system outputs levels that have a similar mechanical sequence to the target mechanic sequence but with a different playthrough experience. We compare our system to a greedy method that selects scenes that maximize the target mechanics. Our system is able to maximize the number of matched mechanics while reducing emergent mechanics using the stitching process compared to the greedy approach.



قيم البحث

اقرأ أيضاً

Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the {em do whats possible} representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high-quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.
Relational representations in reinforcement learning allow for the use of structural information like the presence of objects and relationships between them in the description of value functions. Through this paper, we show that such representations allow for the inclusion of background knowledge that qualitatively describes a state and can be used to design agents that demonstrate learning behavior in domains with large state and actions spaces such as computer games.
We introduce a procedural content generation (PCG) framework at the intersections of experience-driven PCG and PCG via reinforcement learning, named ED(PCG)RL, EDRL in short. EDRL is able to teach RL designers to generate endless playable levels in a n online manner while respecting particular experiences for the player as designed in the form of reward functions. The framework is tested initially in the Super Mario Bros game. In particular, the RL designers of Super Mario Bros generate and concatenate level segments while considering the diversity among the segments. The correctness of the generation is ensured by a neural net-assisted evolutionary level repairer and the playability of the whole level is determined through AI-based testing. Our agents in this EDRL implementation learn to maximise a quantification of Kosters principle of fun by moderating the degree of diversity across level segments. Moreover, we test their ability to design fun levels that are diverse over time and playable. Our proposed framework is capable of generating endless, playable Super Mario Bros levels with varying degrees of fun, deviation from earlier segments, and playability. EDRL can be generalised to any game that is built as a segment-based sequential process and features a built-in compressed representation of its game content.
Whilst there are perhaps only a few scientific methods, there seem to be almost as many artistic methods as there are artists. Artistic processes appear to inhabit the highest order of open-endedness. To begin to understand some of the processes of a rt making it is helpful to try to automate them even partially. In this paper, a novel algorithm for producing generative art is described which allows a user to input a text string, and which in a creative response to this string, outputs an image which interprets that string. It does so by evolving images using a hierarchical neural Lindenmeyer system, and evaluating these images along the way using an image text dual encoder trained on billions of images and their associated text from the internet. In doing so we have access to and control over an instance of an artistic process, allowing analysis of which aspects of the artistic process become the task of the algorithm, and which elements remain the responsibility of the artist.
Multitasking optimization is a recently introduced paradigm, focused on the simultaneous solving of multiple optimization problem instances (tasks). The goal of multitasking environments is to dynamically exploit existing complementarities and synerg ies among tasks, helping each other through the transfer of genetic material. More concretely, Evolutionary Multitasking (EM) regards to the resolution of multitasking scenarios using concepts inherited from Evolutionary Computation. EM approaches such as the well-known Multifactorial Evolutionary Algorithm (MFEA) are lately gaining a notable research momentum when facing with multiple optimization problems. This work is focused on the application of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) to the well-known Capacitated Vehicle Routing Problem (CVRP). In overall, 11 different multitasking setups have been built using 12 datasets. The contribution of this research is twofold. On the one hand, it is the first application of the MFCGA to the Vehicle Routing Problem family of problems. On the other hand, equally interesting is the second contribution, which is focused on the quantitative analysis of the positive genetic transferability among the problem instances. To do that, we provide an empirical demonstration of the synergies arisen between the different optimization tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا