ترغب بنشر مسار تعليمي؟ اضغط هنا

Relational Reinforcement Learning in Infinite Mario

124   0   0.0 ( 0 )
 نشر من قبل Shiwali Mohan
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Relational representations in reinforcement learning allow for the use of structural information like the presence of objects and relationships between them in the description of value functions. Through this paper, we show that such representations allow for the inclusion of background knowledge that qualitatively describes a state and can be used to design agents that demonstrate learning behavior in domains with large state and actions spaces such as computer games.



قيم البحث

اقرأ أيضاً

We introduce a procedural content generation (PCG) framework at the intersections of experience-driven PCG and PCG via reinforcement learning, named ED(PCG)RL, EDRL in short. EDRL is able to teach RL designers to generate endless playable levels in a n online manner while respecting particular experiences for the player as designed in the form of reward functions. The framework is tested initially in the Super Mario Bros game. In particular, the RL designers of Super Mario Bros generate and concatenate level segments while considering the diversity among the segments. The correctness of the generation is ensured by a neural net-assisted evolutionary level repairer and the playability of the whole level is determined through AI-based testing. Our agents in this EDRL implementation learn to maximise a quantification of Kosters principle of fun by moderating the degree of diversity across level segments. Moreover, we test their ability to design fun levels that are diverse over time and playable. Our proposed framework is capable of generating endless, playable Super Mario Bros levels with varying degrees of fun, deviation from earlier segments, and playability. EDRL can be generalised to any game that is built as a segment-based sequential process and features a built-in compressed representation of its game content.
This paper presents a level generation method for Super Mario by stitching together pre-generated scenes that contain specific mechanics, using mechanic-sequences from agent playthroughs as input specifications. Given a sequence of mechanics, our sys tem uses an FI-2Pop algorithm and a corpus of scenes to perform automated level authoring. The system outputs levels that have a similar mechanical sequence to the target mechanic sequence but with a different playthrough experience. We compare our system to a greedy method that selects scenes that maximize the target mechanics. Our system is able to maximize the number of matched mechanics while reducing emergent mechanics using the stitching process compared to the greedy approach.
76 - Lingbing Guo , Zequn Sun , Wei Hu 2019
We study the problem of knowledge graph (KG) embedding. A widely-established assumption to this problem is that similar entities are likely to have similar relational roles. However, existing related methods derive KG embeddings mainly based on tripl e-level learning, which lack the capability of capturing long-term relational dependencies of entities. Moreover, triple-level learning is insufficient for the propagation of semantic information among entities, especially for the case of cross-KG embedding. In this paper, we propose recurrent skipping networks (RSNs), which employ a skipping mechanism to bridge the gaps between entities. RSNs integrate recurrent neural networks (RNNs) with residual learning to efficiently capture the long-term relational dependencies within and between KGs. We design an end-to-end framework to support RSNs on different tasks. Our experimental results showed that RSNs outperformed state-of-the-art embedding-based methods for entity alignment and achieved competitive performance for KG completion.
Can artificial agents learn to assist others in achieving their goals without knowing what those goals are? Generic reinforcement learning agents could be trained to behave altruistically towards others by rewarding them for altruistic behaviour, i.e ., rewarding them for benefiting other agents in a given situation. Such an approach assumes that other agents goals are known so that the altruistic agent can cooperate in achieving those goals. However, explicit knowledge of other agents goals is often difficult to acquire. Even assuming such knowledge to be given, training of altruistic agents would require manually-tuned external rewards for each new environment. Thus, it is beneficial to develop agents that do not depend on external supervision and can learn altruistic behaviour in a task-agnostic manner. Assuming that other agents rationally pursue their goals, we hypothesize that giving them more choices will allow them to pursue those goals better. Some concrete examples include opening a door for others or safeguarding them to pursue their objectives without interference. We formalize this concept and propose an altruistic agent that learns to increase the choices another agent has by maximizing the number of states that the other agent can reach in its future. We evaluate our approach on three different multi-agent environments where another agents success depends on the altruistic agents behaviour. Finally, we show that our unsupervised agents can perform comparably to agents explicitly trained to work cooperatively. In some cases, our agents can even outperform the supervised ones.
State-of-the-art meta reinforcement learning algorithms typically assume the setting of a single agent interacting with its environment in a sequential manner. A negative side-effect of this sequential execution paradigm is that, as the environment b ecomes more and more challenging, and thus requiring more interaction episodes for the meta-learner, it needs the agent to reason over longer and longer time-scales. To combat the difficulty of long time-scale credit assignment, we propose an alternative parallel framework, which we name Concurrent Meta-Reinforcement Learning (CMRL), that transforms the temporal credit assignment problem into a multi-agent reinforcement learning one. In this multi-agent setting, a set of parallel agents are executed in the same environment and each of these rollout agents are given the means to communicate with each other. The goal of the communication is to coordinate, in a collaborative manner, the most efficient exploration of the shared task the agents are currently assigned. This coordination therefore represents the meta-learning aspect of the framework, as each agent can be assigned or assign itself a particular section of the current tasks state space. This framework is in contrast to standard RL methods that assume that each parallel rollout occurs independently, which can potentially waste computation if many of the rollouts end up sampling the same part of the state space. Furthermore, the parallel setting enables us to define several reward sharing functions and auxiliary losses that are non-trivial to apply in the sequential setting. We demonstrate the effectiveness of our proposed CMRL at improving over sequential methods in a variety of challenging tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا