ﻻ يوجد ملخص باللغة العربية
We consider the symmetric two-state 16-vertex model on the square lattice whose vertex weights are invariant under any permutation of adjacent edge states. The vertex-weight parameters are restricted to a critical manifold which is self-dual under the gauge transformation. The critical properties of the model are studied numerically by using the Corner Transfer Matrix Renormalization Group method. Accuracy of the method is tested on two exactly solvable cases: the Ising model and a specific version of the Baxter 8-vertex model in a zero field that belong to different universality classes. Numerical results show that the two exactly solvable cases are connected by a line of critical points with the polarization as the order parameter. There are numerical indications that critical exponents vary continuously along this line in such a way that the weak universality hypothesis is violated.
We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on t
The critical properties of the stochastic susceptible-exposed-infected model on a square lattice is studied by numerical simulations and by the use of scaling relations. In the presence of an infected individual, a susceptible becomes either infected
The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of
We have made substantial advances in elucidating the properties of the susceptibility of the square lattice Ising model. We discuss its analyticity properties, certain closed form expressions for subsets of the coefficients, and give an algorithm of