ﻻ يوجد ملخص باللغة العربية
The critical properties of the stochastic susceptible-exposed-infected model on a square lattice is studied by numerical simulations and by the use of scaling relations. In the presence of an infected individual, a susceptible becomes either infected or exposed. Once infected or exposed, the individual remains forever in this state. The stationary properties are shown to be the same as those of isotropic percolation so that the critical behavior puts the model into the universality class of dynamic percolation.
The edge-cubic spin model on square lattice is studied via Monte Carlo simulation with cluster algorithm. By cooling the system, we found two successive symmetry breakings, i.e., the breakdown of $O_h$ into the group of $C_{3h}$ which then freezes in
We investigate the behaviour of the shortest path on a directed two-dimensional square lattice for bond percolation at the critical probability $p_c$ . We observe that flipping an edge lying on the shortest path has a non-local effect in the form of
The Susceptible-Infected-Susceptible model is a canonical model for emerging disease outbreaks. Such outbreaks are naturally modeled as taking place on networks. A theoretical challenge in network epidemiology is the dynamic correlations coming from
We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on t
The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of