ﻻ يوجد ملخص باللغة العربية
This paper studies the reliability of a real-world learning-enabled system, which conducts dynamic vehicle tracking based on a high-resolution wide-area motion imagery input. The system consists of multiple neural network components -- to process the imagery inputs -- and multiple symbolic (Kalman filter) components -- to analyse the processed information for vehicle tracking. It is known that neural networks suffer from adversarial examples, which make them lack robustness. However, it is unclear if and how the adversarial examples over learning components can affect the overall system-level reliability. By integrating a coverage-guided neural network testing tool, DeepConcolic, with the vehicle tracking system, we found that (1) the overall system can be resilient to some adversarial examples thanks to the existence of other components, and (2) the overall system presents an extra level of uncertainty which cannot be determined by analysing the deep learning components only. This research suggests the need for novel verification and validation methods for learning-enabled systems.
Estimating the states of surrounding traffic participants stays at the core of autonomous driving. In this paper, we study a novel setting of this problem: model-free single-object tracking (SOT), which takes the object state in the first frame as in
Employing Vehicle-to-Vehicle communication to enhance perception performance in self-driving technology has attracted considerable attention recently; however, the absence of a suitable open dataset for benchmarking algorithms has made it difficult t
Prior correlation filter (CF)-based tracking methods for unmanned aerial vehicles (UAVs) have virtually focused on tracking in the daytime. However, when the night falls, the trackers will encounter more harsh scenes, which can easily lead to trackin
We present a novel approach to robustly detect and perceive vehicles in different camera views as part of a cooperative vehicle-infrastructure system (CVIS). Our formulation is designed for arbitrary camera views and makes no assumptions about intrin
The vehicle re-identification (ReID) plays a critical role in the perception system of autonomous driving, which attracts more and more attention in recent years. However, to our best knowledge, there is no existing complete solution for the surround