ﻻ يوجد ملخص باللغة العربية
We study the interaction between a single two-level atom and a single-photon probe pulse in a guided mode of a nanofiber. We examine the situation of chiral interaction, where the atom has a dipole rotating in the meridional plane of the nanofiber, and the probe pulse is quasilinearly polarized along the radial direction of the atom position in the fiber transverse plane. We show that the atomic excitation probability, the photon transmission flux, and the photon transmission probability depend on the propagation direction of the probe pulse along the fiber axis. In contrast, the reflection flux and the reflection probability do not depend on the propagation direction of the probe pulse. We find that the asymmetry parameter for the atomic excitation probability does not vary in time and does not depend on the probe pulse shape.
State mapping between atoms and photons, and photon-photon interactions play an important role in scalable quantum information processing. We consider the interaction of a two-level atom with a quantized textit{propagating} pulse in free space and st
We theoretically analyse the efficiency of a quantum memory for single photons. The photons propagate along a transmission line and impinge on one of the mirrors of a high-finesse cavity. The quantum memory is constituted by a single atom within the
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities a
We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc