ﻻ يوجد ملخص باللغة العربية
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency {eta}a = 10-4 only 50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.
We present experimental and theoretical study of single semiconductor quantum dots excited by two non-degenerate, resonantly tuned variably polarized lasers. The first laser is tuned to excitonic resonances. Depending on its polarization it photogene
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We fin
We study the interaction between a single two-level atom and a single-photon probe pulse in a guided mode of a nanofiber. We examine the situation of chiral interaction, where the atom has a dipole rotating in the meridional plane of the nanofiber, a
Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, to deterministically control an optical signal with a single photon requires strong interactions with a q
State mapping between atoms and photons, and photon-photon interactions play an important role in scalable quantum information processing. We consider the interaction of a two-level atom with a quantized textit{propagating} pulse in free space and st