ﻻ يوجد ملخص باللغة العربية
Context: Remote light scattering and thermal infrared observations provide clues about the physical properties of cometary and interplanetary dust particles. Identifying these properties will lead to a better understanding of the formation and evolution of the Solar System. Aims: We present a numerical solution for the radiative and conductive heat transport in a random particulate medium enclosed by an arbitrarily shaped surface. The method will be applied to study thermal properties of cometary dust particles. Methods: The recently introduced incoherent Monte Carlo radiative transfer method developed for scattering, absorption, and propagation of electromagnetic waves in dense discrete random media is extended for radiative heat transfer and thermal emission. The solution is coupled with the conductive Fourier transport equation that is solved with the finite-element method. Results: The proposed method allows the synoptic analysis of light scattering and thermal emission by large cometary dust particles consisting of submicrometer-sized grains. In particular, we show that these particles can sustain significant temperature gradients resulting in the superheating factor phase function observed for the coma of comet 67P/Churyumov-Gerasimenko.
Context. Cometary dust particles are subjected to various forces after being lifted off the nucleus. These forces define the dynamics of dust, trajectories, alignment, and fragmentation, which, in turn, have a significant effect on the particle distr
We present a possible correlation between the properties of scattered and thermal radiation from dust and the principal dust characteristics responsible for this relationship. To this end, we use the NASA/PDS archival polarimetric data on cometary du
We model the infrared emission from zodiacal dust detected by the IRAS and COBE missions, with the aim of estimating the relative contributions of asteroidal, cometary and interstellar dust to the zodiacal cloud. Our most important result is the dete
Tiny meteoroids entering the Earths atmosphere and inducing meteor showers have long been thought to originate partly from cometary dust. Together with other dust particles, they form a huge cloud around the Sun, the zodiacal cloud. From our previous
A numerical approach to the problem of wave scattering by many small particles is developed under the assumptions k<<1, d>>a, where a is the size of the particles and d is the distance between the neighboring particles. On the wavelength one may have