ﻻ يوجد ملخص باللغة العربية
We model the infrared emission from zodiacal dust detected by the IRAS and COBE missions, with the aim of estimating the relative contributions of asteroidal, cometary and interstellar dust to the zodiacal cloud. Our most important result is the detection of an isotropic component of foreground radiation due to interstellar dust. The dust in the inner solar system is known to have a fan-like distribution. If this is assumed to extend to the orbit of Mars, we find that cometary, asteroidal and interstellar dust account for 70%, 22% and 7.5% of the dust in the fan. We find a worse fit if the fan is assumed to extend to the orbit of Jupiter. Our model is broadly consistent with the analysis by Divine (1993) of interplanetary dust detected by Ulysses and other spacecraft. Our estimate of the mass-density of interstellar dust in the inner solar system is consistent with estimates from Ulysses at 1.5 au, but is an order of magnitude higher than Ulysses estimates at r > 4 au. Only 1% of the zodiacal dust arriving at the earth would be interstellar, in our model. Our models can be further tested by ground-based kinematical studies of the zodiacal cloud, which need to extend over a period of years to monitor solar cycle variations in interstellar dust, by dynamical simulations, and by in situ measurements from spacecraft.
Tiny meteoroids entering the Earths atmosphere and inducing meteor showers have long been thought to originate partly from cometary dust. Together with other dust particles, they form a huge cloud around the Sun, the zodiacal cloud. From our previous
Zodiacal emission is thermal emission from interplanetary dust. Its contribution to the sky brightness is non-negligible in the region near the ecliptic plane, even in the far-infrared (far-IR) wavelength regime. We analyse zodiacal emission observed
Context. Cometary dust particles are subjected to various forces after being lifted off the nucleus. These forces define the dynamics of dust, trajectories, alignment, and fragmentation, which, in turn, have a significant effect on the particle distr
We have obtained new NASA IRTF SpeX spectra of the HR 4796A debris ring system. We find a unique red excess flux that extends out to ~9 um in Spitzer IRS spectra, where thermal emission from cold, ~100K dust from the systems ring at ~75 AU takes over
The upcoming generation of cosmic microwave background (CMB) experiments face a major challenge in detecting the weak cosmic B-mode signature predicted as a product of primordial gravitational waves. To achieve the required sensitivity these experime