ﻻ يوجد ملخص باللغة العربية
Squeezed states are a primary resource for continuous-variable (CV) quantum information processing. To implement CV protocols in a scalable and robust way, it is desirable to generate and manipulate squeezed states using an integrated photonics platform. In this Letter, we demonstrate the generation of quadrature-phase squeezed states in the radio-frequency carrier sideband using a small-footprint silicon-nitride microresonator with a dual-pumped four-wave-mixing process. We record a squeezed noise level of 1.34 dB ($pm$0.16 dB) below the photocurrent shot noise, which corresponds to 3.09 dB ($pm$0.49 dB) of quadrature squeezing on chip. We also show that it is critical to account for the nonlinear behavior of the pump fields to properly predict the squeezing that can be generated in this system. This technology represents a significant step toward creating and manipulating large-scale CV cluster states that can be used for quantum information applications including universal quantum computing.
Two-dimensional hexagonal boron nitride (hBN) that hosts bright room-temperature single-photon emitters (SPEs) is a promising material platform for quantum information applications. An important step towards the practical application of hBN is the on
Engineering an array of precisely located cavity-coupled active media poses a major experimental challenge in the field of hybrid integrated photonics. We deterministically position solution processed colloidal quantum dots (QDs) on high quality-fact
Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and det
Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to
We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in