ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical Modeling, Laboratory Experiments, and Sensitivity Analysis of Bioplug Technology at Darcy Scale

54   0   0.0 ( 0 )
 نشر من قبل David Landa-Marb\\'an Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study a Darcy-scale mathematical model for biofilm formation in porous media. The pores in the core are divided into three phases: water, oil, and biofilm. The water and oil flow are modeled by an extended version of Darcys law and the substrate is transported by diffusion and convection in the water phase. Initially there is biofilm on the pore walls. The biofilm consumes substrate for production of biomass and modifies the pore space which changes the rock permeability. The model includes detachment of biomass due to water flux and death of bacteria, and is implemented in MRST. We discuss the capability of the numerical simulator to capture results from laboratory experiments. We perform a novel sensitivity analysis based on sparse-grid interpolation and multi-wavelet expansion to identify the critical model parameters. Numerical experiments using diverse injection strategies are performed to study the impact of different porosity-permeability relations in a core saturated with water and oil.



قيم البحث

اقرأ أيضاً

4D acoustic imaging via an array of 32 sources / 32 receivers is used to monitor hydraulic fracture propagating in a 250~mm cubic specimen under a true-triaxial state of stress. We present a method based on the arrivals of diffracted waves to reconst ruct the fracture geometry (and fluid front when distinct from the fracture front). Using Bayesian model selection, we rank different possible fracture geometries (radial, elliptical, tilted or not) and estimate model error. The imaging is repeated every 4 seconds and provide a quantitative measurement of the growth of these low velocity fractures. We test the proposed method on two experiments performed in two different rocks (marble and gabbro) under experimental conditions characteristic respectively of the fluid lag-viscosity (marble) and toughness (gabbro) dominated hydraulic fracture propagation regimes. In both experiments, about 150 to 200 source-receiver combinations exhibit clear diffracted wave arrivals. The results of the inversion indicate a radial geometry evolving slightly into an ellipse towards the end of the experiment when the fractures feel the specimen boundaries. The estimated modelling error with all models is of the order of the wave arrival picking error. Posterior estimates indicate an uncertainty of the order of a millimeter on the fracture front location for a given acquisition sequence. The reconstructed fracture evolution from diffracted waves is shown to be consistent with the analysis of $90^{circ}$ incidence transmitted waves across the growing fracture.
136 - Tengteng Lu , Zhen Li , Chao Luo 2018
Previous cryogenic electronics studies are most above 4.2K. In this paper we present the cryogenic characterization of a 0.18{mu}m standard bulk CMOS technology(1.8V and 5V) at sub-kelvin temperature around 270mK. PMOS and NMOS devices with different width to length ratios(W/L) are tested and characterized under various bias conditions at temperatures from 300K to 270mK. It is shown that the 0.18{mu}m standard bulk CMOS technology is still working at sub-kelvin temperature. The kink effect and current overshoot phenomenon are observed at sub-kelvin temperature. Especially, current overshoot phenomenon in PMOS devices at sub-kelvin temperature is shown for the first time. The transfer characteristics of large and thin-oxide devices at sub-kelvin temperature are modeled using the simplified EKV model. This work facilitates the CMOS circuits design and the integration of CMOS circuits with silicon-based quantum chips at extremely low temperatures.
The growing need for creating surfaces with specific wetting properties, such as superhyrdophobic behavior, asks for novel methods for their efficient design. In this work, a fast computational method for the evaluation of patterned superhyrdophobic surfaces is introduced. The hydrophobicity of a surface is quantified in energy terms through an objective function. The increased computational cost led to the parallelization of the method with the Message Passing Interface (MPI) communication protocol that enables calculations on distributed memory systems allowing for parametric investigations at acceptable time frames. The method is demonstrated for a surface consisting of an array of pillars with inverted conical (frustum) geometry. The parallel speedup achieved allows for low cost parametric investigations on the effect of the fine features (curvature and slopes) of the pillars on the superhydophobicity of the surface and consequently for the optimization of superhyrdophobic surfaces.
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD ) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.
Corridors of size-selected crescent-shaped dunes, known as barchans, are commonly found in water, air, and other planetary environments. The growth of barchans results from the interplay between a fluid flow and a granular bed, but their size regulat ion involves intricate exchanges between different barchans within a field. One size-regulating mechanism is the binary interaction between nearby dunes, when two dunes exchange mass via the near flow field or by direct contact (collision). In a recent Letter (Assis and Franklin, Geophys. Res. Lett., 2020), we identified five different patterns arising from binary interactions of subaqueous barchans, and proposed classification maps. In this paper, we further inquire into binary exchanges by investigating the motion of individual grains while barchans interact with each other. The experiments were conducted in a water channel where the evolution of pairs of barchans in both aligned and off-centered configurations was recorded by conventional and high-speed cameras. Based on image processing, we obtained the morphology of dunes and motion of grains for all interaction patterns. We present the trajectories of individual grains, from which we show the origin and destination of moving grains, and their typical lengths and velocities. We also show that grains from the impacting dune spread with a diffusion-like component over the target barchan, and we propose a diffusion length. Our results provide new insights into the size-regulating mechanisms of barchans and barchanoid forms found on Earth and other planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا