ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-lapse reconstruction of the fracture front from diffracted waves arrivals in laboratory hydraulic fracture experiments

86   0   0.0 ( 0 )
 نشر من قبل Brice Lecampion
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

4D acoustic imaging via an array of 32 sources / 32 receivers is used to monitor hydraulic fracture propagating in a 250~mm cubic specimen under a true-triaxial state of stress. We present a method based on the arrivals of diffracted waves to reconstruct the fracture geometry (and fluid front when distinct from the fracture front). Using Bayesian model selection, we rank different possible fracture geometries (radial, elliptical, tilted or not) and estimate model error. The imaging is repeated every 4 seconds and provide a quantitative measurement of the growth of these low velocity fractures. We test the proposed method on two experiments performed in two different rocks (marble and gabbro) under experimental conditions characteristic respectively of the fluid lag-viscosity (marble) and toughness (gabbro) dominated hydraulic fracture propagation regimes. In both experiments, about 150 to 200 source-receiver combinations exhibit clear diffracted wave arrivals. The results of the inversion indicate a radial geometry evolving slightly into an ellipse towards the end of the experiment when the fractures feel the specimen boundaries. The estimated modelling error with all models is of the order of the wave arrival picking error. Posterior estimates indicate an uncertainty of the order of a millimeter on the fracture front location for a given acquisition sequence. The reconstructed fracture evolution from diffracted waves is shown to be consistent with the analysis of $90^{circ}$ incidence transmitted waves across the growing fracture.



قيم البحث

اقرأ أيضاً

Numerical simulation models associated with hydraulic engineering take a wide array of data into account to produce predictions: rainfall contribution to the drainage basin (characterized by soil nature, infiltration capacity and moisture), current w ater height in the river, topography, nature and geometry of the river bed, etc. This data is tainted with uncertainties related to an imperfect knowledge of the field, measurement errors on the physical parameters calibrating the equations of physics, an approximation of the latter, etc. These uncertainties can lead the model to overestimate or underestimate the flow and height of the river. Moreover, complex assimilation models often require numerous evaluations of physical solvers to evaluate these uncertainties, limiting their use for some real-time operational applications. In this study, we explore the possibility of building a predictor for river height at an observation point based on drainage basin time series data. An array of data-driven techniques is assessed for this task, including statistical models, machine learning techniques and deep neural network approaches. These are assessed on several metrics, offering an overview of the possibilities related to hydraulic time-series. An important finding is that for the same hydraulic quantity, the best predictors vary depending on whether the data is produced using a physical model or real observations.
93 - Fan Fei , Jinhyun Choo 2020
Geologic shear fractures such as faults and slip surfaces involve marked friction along the discontinuities as they are subjected to significant confining pressures. This friction plays a critical role in the growth of these shear fractures, as revea led by the fracture mechanics theory of Palmer and Rice decades ago. In this paper, we develop a novel phase-field model of shear fracture in pressure-sensitive geomaterials, honoring the role of friction in the fracture propagation mechanism. Building on a recently proposed phase-field method for frictional interfaces, we formulate a set of governing equations for different contact conditions (or lack thereof) in which frictional energy dissipation emerges in the crack driving force during slip. We then derive the degradation function and the threshold fracture energy of the phase-field model such that the stress-strain behavior is insensitive to the length parameter for phase-field regularization. This derivation procedure extends a methodology used in recent phase-field models of cohesive tensile fracture to shear fracture in frictional materials in which peak and residual strengths coexist and evolve by confining pressure. The resulting phase-field formulation is demonstrably consistent with the theory of Palmer and Rice. Numerical examples showcase that the proposed phase-field model is a physically sound and numerically efficient method for simulating shear fracture processes in geologic materials, such as faulting and slip surface growth.
99 - Fan Fei , Jinhyun Choo 2020
Cracking of rocks and rock-like materials exhibits a rich variety of patterns where tensile (mode I) and shear (mode II) fractures are often interwoven. These mixed-mode fractures are usually cohesive (quasi-brittle) and frictional. Although phase-fi eld modeling is increasingly used for rock fracture simulation, no phase-field formulation is available for cohesive and frictional mixed-mode fracture. To address this shortfall, here we develop a double-phase-field formulation that employs two different phase fields to describe cohesive tensile fracture and frictional shear fracture individually. The formulation rigorously combines the two phase fields through three approaches: (i) crack-direction-based decomposition of the strain energy into the tensile, shear, and pure compression parts, (ii) contact-dependent calculation of the potential energy, and (iii) energy-based determination of the dominant fracturing mode in each contact condition. We validate the proposed model, both qualitatively and quantitatively, with experimental data on mixed-mode fracture in rocks. The validation results demonstrate that the double-phase-field model -- a combination of two quasi-brittle phase-field models -- allows one to directly use material strengths measured from experiments, unlike brittle phase-field models for mixed-mode fracture in rocks. Another standout feature of the double-phase-field model is that it can simulate, and naturally distinguish between, tensile and shear fractures without complex algorithms.
A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a conseq uence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.
Given an Internet photo collection of a landmark, we compute a 3D time-lapse video sequence where a virtual camera moves continuously in time and space. While previous work assumed a static camera, the addition of camera motion during the time-lapse creates a very compelling impression of parallax. Achieving this goal, however, requires addressing multiple technical challenges, including solving for time-varying depth maps, regularizing 3D point color profiles over time, and reconstructing high quality, hole-free images at every frame from the projected profiles. Our results show photorealistic time-lapses of skylines and natural scenes over many years, with dramatic parallax effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا