ﻻ يوجد ملخص باللغة العربية
4D acoustic imaging via an array of 32 sources / 32 receivers is used to monitor hydraulic fracture propagating in a 250~mm cubic specimen under a true-triaxial state of stress. We present a method based on the arrivals of diffracted waves to reconstruct the fracture geometry (and fluid front when distinct from the fracture front). Using Bayesian model selection, we rank different possible fracture geometries (radial, elliptical, tilted or not) and estimate model error. The imaging is repeated every 4 seconds and provide a quantitative measurement of the growth of these low velocity fractures. We test the proposed method on two experiments performed in two different rocks (marble and gabbro) under experimental conditions characteristic respectively of the fluid lag-viscosity (marble) and toughness (gabbro) dominated hydraulic fracture propagation regimes. In both experiments, about 150 to 200 source-receiver combinations exhibit clear diffracted wave arrivals. The results of the inversion indicate a radial geometry evolving slightly into an ellipse towards the end of the experiment when the fractures feel the specimen boundaries. The estimated modelling error with all models is of the order of the wave arrival picking error. Posterior estimates indicate an uncertainty of the order of a millimeter on the fracture front location for a given acquisition sequence. The reconstructed fracture evolution from diffracted waves is shown to be consistent with the analysis of $90^{circ}$ incidence transmitted waves across the growing fracture.
Numerical simulation models associated with hydraulic engineering take a wide array of data into account to produce predictions: rainfall contribution to the drainage basin (characterized by soil nature, infiltration capacity and moisture), current w
Geologic shear fractures such as faults and slip surfaces involve marked friction along the discontinuities as they are subjected to significant confining pressures. This friction plays a critical role in the growth of these shear fractures, as revea
Cracking of rocks and rock-like materials exhibits a rich variety of patterns where tensile (mode I) and shear (mode II) fractures are often interwoven. These mixed-mode fractures are usually cohesive (quasi-brittle) and frictional. Although phase-fi
A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a conseq
Given an Internet photo collection of a landmark, we compute a 3D time-lapse video sequence where a virtual camera moves continuously in time and space. While previous work assumed a static camera, the addition of camera motion during the time-lapse