ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Markovian master equations from piecewise dynamics

133   0   0.0 ( 0 )
 نشر من قبل Bassano Vacchini
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bassano Vacchini




اسأل ChatGPT حول البحث

We construct a large class of completely positive and trace preserving non-Markovian dynamical maps for an open quantum system. These maps arise from a piecewise dynamics characterized by a continuous time evolution interrupted by jumps, randomly distributed in time and described by a quantum channel. The state of the open system is shown to obey a closed evolution equation, given by a master equation with a memory kernel and a inhomogeneous term. The non-Markovianity of the obtained dynamics is explicitly assessed studying the behavior of the distinguishability of two different initial systems states with elapsing time.



قيم البحث

اقرأ أيضاً

We investigate what a snapshot of a quantum evolution - a quantum channel reflecting open system dynamics - reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of `Markovianity is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.
Master equations are a useful tool to describe the evolution of open quantum systems. In order to characterize the mathematical features and the physical origin of the dynamics, it is often useful to consider different kinds of master equations for t he same system. Here, we derive an exact connection between the time-local and the integro-differential descriptions, focusing on the class of commutative dynamics. The use of the damping-basis formalism allows us to devise a general procedure to go from one master equation to the other and vice-versa, by working with functions of time and their Laplace transforms only. We further analyze the Lindbladian form of the time-local and the integro-differential master equations, where we account for the appearance of different sets of Lindbladian operators. In addition, we investigate a Redfield-like approximation, that transforms the exact integro-differential equation into a time-local one by means of a coarse graining in time. Besides relating the structure of the resulting master equation to those associated with the exact dynamics, we study the effects of the approximation on Markovianity. In particular, we show that, against expectation, the coarse graining in time can possibly introduce memory effects, leading to a violation of a divisibility property of the dynamics.
Complete characterization of complete positivity preserving non-Markovian master equations is presented.
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these ap proximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.
131 - Alberto Barchielli 2015
The quantum stochastic Schroedinger equation or Hudson-Parthasareathy (HP) equation is a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop the theory of measurements in continuous time via the construction of output fields. An important feature of such an equation is that it allows to treat not only absorption and emission of quanta, but also scattering processes, which however had very few applications in physical modelling. Moreover, recent developments have shown that also some non-Markovian dynamics can be generated by suitable choices of the state of the quantum noises involved in the HP-equation. This paper is devoted to an application involving these two features, non-Markovianity and scattering process. We consider a micro-mirror mounted on a vibrating structure and reflecting a laser beam, a process giving rise to a radiation-pressure force on the mirror. We show that this process needs the scattering part of the HP-equation to be described. On the other side, non-Markovianity is introduced by the dissipation due to the interaction with some thermal environment which we represent by a phonon field, with a nearly arbitrary excitation spectrum, and by the introduction of phase noise in the laser beam. Finally, we study the full power spectrum of the reflected light and we show how the laser beam can be used as a temperature probe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا