ﻻ يوجد ملخص باللغة العربية
3C-SiC epitaxially grown on Si displays a large wealth of extended defects. In particular, single, double and triple stacking faults (SFs) are observed in several experiments to coexist. Overabundance of defects has so far limited the exploitation of 3C-SiC/Si for power electronics, in spite of its several ideal properties (mainly in terms of wide gap, high breakdown fields and thermal properties) and the possibility of a direct integration in the Si technology. Here we use a multiscale approach, based on both classical molecular dynamics (MD) simulations and first-principle calculations, to investigate in-depth the origin, nature and properties of most common 3C-SiC/Si(001) extended defects. Our MD simulations reveal a natural path for the formation of partial dislocation complexes terminating both double and triple SFs. MD results are used as input for superior DFT calculations, allowing us to better determine the core structure and to investigate electronic properties. It turns out that the partial dislocation complexes terminating double and triple SFs are responsible for the introduction of electronic states significantly filling the gap. On the other hand, individual partial dislocations terminating single SFs only induce states very close to the gap edge. We conclude that partial dislocation complexes, in particular the most abundant triple ones, are killer defects in terms of favoring leakage currents. Suggestions coming from theory/simulations for devising a strategy to lower their occurrence are discussed.
This communication presents a comparative study on the charge transport (in transient and steady state) in bulk n-type doped SiC-polytypes: 3C-SiC, 4H-SiC and 6H-SiC. The time evolution of the basic macrovariables: the electron drift velocity and the
Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calc
Driven by the unprecedented computational power available to scientific research, the use of computers in solid-state physics, chemistry and materials science has been on a continuous rise. This review focuses on the software used for the simulation
The MAterials Simulation Toolkit (MAST) is a workflow manager and post-processing tool for ab initio defect and diffusion workflows. MAST codifies research knowledge and best practices for such workflows, and allows for the generation and management
Electronic structures of SiC nanoribbons have been studied by spin-polarized density functional calculations. The armchair nanoribbons are nonmagnetic semiconductor, while the zigzag nanoribbons are magnetic metal. The spin polarization in zigzag SiC