ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films

310   0   0.0 ( 0 )
 نشر من قبل Yong Su Kim
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calculations revealed that the Sr-O-O vacancy complexes create deep localized states in the band gap of SrTiO3 without affecting its insulating property. These results are in agreement with electronic structural changes determined from optical transmission and X-ray absorption measurements. This work opens the way to exploiting oxygen vacancies and their complexes as a source of ferroelectricity in perovskite oxide thin films, including STO.



قيم البحث

اقرأ أيضاً

We investigated the ferroelectric properties of strontium titanate (STO) thin films deposited on SrTiO3 (001) substrate with SrRuO3 electrodes. The STO layer was grown coherently on the SrTiO3 substrate without in-plane lattice relaxation, but its ou t-of-plane lattice constant increased with a decrease in the oxygen pressure during deposition. Using piezoresponse force microscopy and P-V measurements, we showed that our tetragonal STO films possess room-temperature ferroelectricity. We discuss the possible origins of the observed ferroelectricity.
The Landau theory of phase transitions of Ba0.8Sr0.2TiO3 thin film under external electric field applied in the planar geometry is developed. The interfacial van-der-Waals field Ez=1.1x10^8 V/m oriented normal to the film-substrate interface was intr oduced in to the model calculation to explain experimentally observed behavior of the polarization as a function of planar electric field. The Ez - misfit strain phase diagram of the film is constructed and discussed.
The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that th e structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C-C dimer pair accompanied by stronger C-C and weaker C-Ti hybridizations as the C-C distance becomes smaller. As the C-C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.
We studied the ferroelectric and ferromagnetic properties of compressive strained and unstrained BiMnO3 thin films grown by rf-magnetron sputtering. BiMnO3 samples exhibit a 2D cube-on-cube growth mode and a pseudo-cubic struc-ture up to a thickness of 15 nm and of 25 nm when deposited on (001) SrTiO3 and (110) DyScO3, respectively. Above these thicknesses we observe a switching to a 3D island growth and a simultaneous structural change to a monoclinic structure characterized by a (00l) orientation of the monoclinic unit cell. While ferromagnetism is observed below Tc = 100 K for all samples, signatures of room temperature ferroelectricity were found only in the pseudo-cubic ultra-thin films, indicating a correlation between electronic and structural orders.
Ferroelectric HfO2-based materials hold great potential for widespread integration of ferroelectricity into modern electronics due to their robust ferroelectric properties at the nanoscale and compatibility with the existing Si technology. Earlier wo rk indicated that the nanometer crystal grain size was crucial for stabilization of the ferroelectric phase of hafnia. This constraint caused high density of unavoidable structural defects of the HfO2-based ferroelectrics, obscuring the intrinsic ferroelectricity inherited from the crystal space group of bulk HfO2. Here, we demonstrate the intrinsic ferroelectricity in Y-doped HfO2 films of high crystallinity. Contrary to the common expectation, we show that in the 5% Y-doped HfO2 epitaxial thin films, high crystallinity enhances the spontaneous polarization up to a record-high 50 {mu}C/cm2 value at room temperature. The high spontaneous polarization persists at reduced temperature, with polarization values consistent with our theoretical predictions, indicating the dominant contribution from the intrinsic ferroelectricity. The crystal structure of these films reveals the Pca21 orthorhombic phase with a small rhombohedral distortion, underlining the role of the anisotropic stress and strain. These results open a pathway to controlling the intrinsic ferroelectricity in the HfO2-based materials and optimizing their performance in applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا