ﻻ يوجد ملخص باللغة العربية
We report the detection of emission in the v=1-0 P(1) (3.51629 micron) and P(2) (3.60776 micron) rovibrational lines of the helium hydride cation (HeH+) from the planetary nebula NGC 7027. These detections were obtained with the iSHELL spectrograph on NASAs Infrared Telescope Facility (IRTF) on Maunakea. The confirm the discovery of HeH+ reported recently by Guesten et al. (2019), who used the GREAT instrument on the SOFIA airborne observatory to observe its pure rotational J=1-0 transition at 149.137 micron. The flux measured for the HeH+ v=1-0 P(1) line is in good agreement with our model for the formation, destruction and excitation of HeH+ in NGC 7027. The measured strength of the J=1-0 pure rotational line, however, exceeds the model prediction significantly, as does that of the v=1-0 P(2) line, by factors of 2.9 and 2.3 respectively. Possible causes of these discrepancies are discussed. Our observations of NGC 7027, covering the 3.26 - 3.93 micron spectral region, have led to the detection of more than sixty spectral lines including nine rovibrational emissions from CH+. The latter are detected for the first time in an astronomical source.
We discuss the detection of 14 rovibrational lines of CH$^+$, obtained with the iSHELL spectrograph on NASAs Infrared Telescope Facility (IRTF) on Maunakea. Our observations in the 3.49 - 4.13 $mu$m spectral region, obtained with a 0.375 slit width t
NGC 6302 is one of the highest ionization planetary nebulae known and shows emission from species with ionization potential >300eV. The temperature of the central star must be >200,000K to photoionize the nebula, and has been suggested to be up to ~
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In
Previous velocity images which reveal flows of ionized gas along the most prominent cometary tail (from Knot 38) in the Helix planetary nebula are compared with that taken at optical wavelengths with the Hubble Space Telescope and with an image in th
We report the first detections of OH$^+$ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey