ﻻ يوجد ملخص باللغة العربية
Thermodynamic fluctuations in mechanical resonators cause uncertainty in their frequency measurement, fundamentally limiting performance of frequency-based sensors. Recently, integrating nanophotonic motion readout with micro- and nano-mechanical resonators allowed practical chip-scale sensors to routinely operate near this limit in high-bandwidth measurements. However, the exact and general expressions for either thermodynamic frequency measurement uncertainty or efficient, real-time frequency estimators are not well established, particularly for fast and weakly-driven resonators. Here, we derive, and numerically validate, the Cramer-Rao lower bound (CRLB) and an efficient maximum-likelihood estimator for the frequency of a classical linear harmonic oscillator subject to thermodynamic fluctuations. For a fluctuating oscillator without external drive, the frequency Allan deviation calculated from simulated resonator motion data agrees with the derived CRLB $sigma_f = {1 over 2pi}sqrt{Gamma over 2tau}$ for averaging times $tau$ below, as well as above, the relaxation time $1overGamma$. The CRLB approach is general and can be extended to driven resonators, non-negligible motion detection imprecision, as well as backaction from a continuous linear quantum measurement.
The microwave cavity perturbation method is often used to determine material parameters (electric permittivity and magnetic permeability) at high frequencies and it relies on measurement of the resonator parameters. We present a method to determine t
We show that a linear quantum harmonic oscillator is chaotic in the sense of Li-Yorke. We also prove that the weighted backward shift map, used as an infinite dimensional linear chaos model, in a separable Hilbert space is chaotic in the sense of Li-
Why heavily parameterized neural networks (NNs) do not overfit the data is an important long standing open question. We propose a phenomenological model of the NN training to explain this non-overfitting puzzle. Our linear frequency principle (LFP) m
Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering (SAXS): if it is not done sufficiently well, this may become evident during the data analysis stage, necessitating the repetition o
We show that the Zipfs law for Chinese characters perfectly holds for sufficiently short texts (few thousand different characters). The scenario of its validity is similar to the Zipfs law for words in short English texts. For long Chinese texts (or