ترغب بنشر مسار تعليمي؟ اضغط هنا

Rich-Item Recommendations for Rich-Users: Exploiting Dynamic and Static Side Information

76   0   0.0 ( 0 )
 نشر من قبل Amar Budhiraja
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the problem of recommendation system where the users and items to be recommended are rich data structures with multiple entity types and with multiple sources of side-information in the form of graphs. We provide a general formulation for the problem that captures the complexities of modern real-world recommendations and generalizes many existing formulations. In our formulation, each user/document that requires a recommendation and each item or tag that is to be recommended, both are modeled by a set of static entities and a dynamic component. The relationships between entities are captured by several weighted bipartite graphs. To effectively exploit these complex interactions and learn the recommendation model, we propose MEDRES- a multiple graph-CNN based novel deep-learning architecture. MEDRES uses AL-GCN, a novel graph convolution network block, that harnesses strong representative features from the underlying graphs. Moreover, in order to capture highly heterogeneous engagement of different users with the system and constraints on the number of items to be recommended, we propose a novel ranking metric pAp@k along with a method to optimize the metric directly. We demonstrate effectiveness of our method on two benchmarks: a) citation data, b) Flickr data. In addition, we present two real-world case studies of our formulation and the MEDRES architecture. We show how our technique can be used to naturally model the message recommendation problem and the teams recommendation problem in the Microsoft Teams (MSTeams) product and demonstrate that it is 5-6% points more accurate than the production-grade models.



قيم البحث

اقرأ أيضاً

Large scale recommender models find most relevant items from huge catalogs, and they play a critical role in modern search and recommendation systems. To model the input space with large-vocab categorical features, a typical recommender model learns a joint embedding space through neural networks for both queries and items from user feedback data. However, with millions to billions of items in the corpus, users tend to provide feedback for a very small set of them, causing a power-law distribution. This makes the feedback data for long-tail items extremely sparse. Inspired by the recent success in self-supervised representation learning research in both computer vision and natural language understanding, we propose a multi-task self-supervised learning (SSL) framework for large-scale item recommendations. The framework is designed to tackle the label sparsity problem by learning better latent relationship of item features. Specifically, SSL improves item representation learning as well as serving as additional regularization to improve generalization. Furthermore, we propose a novel data augmentation method that utilizes feature correlations within the proposed framework. We evaluate our framework using two real-world datasets with 500M and 1B training examples respectively. Our results demonstrate the effectiveness of SSL regularization and show its superior performance over the state-of-the-art regularization techniques. We also have already launched the proposed techniques to a web-scale commercial app-to-app recommendation system, with significant improvements top-tier business metrics demonstrated in A/B experiments on live traffic. Our online results also verify our hypothesis that our framework indeed improves model performance even more on slices that lack supervision.
65 - Ghazaleh Beigi , Huan Liu 2018
The pervasive use of social media provides massive data about individuals online social activities and their social relations. The building block of most existing recommendation systems is the similarity between users with social relations, i.e., fri ends. While friendship ensures some homophily, the similarity of a user with her friends can vary as the number of friends increases. Research from sociology suggests that friends are more similar than strangers, but friends can have different interests. Exogenous information such as comments and ratings may help discern different degrees of agreement (i.e., congruity) among similar users. In this paper, we investigate if users congruity can be incorporated into recommendation systems to improve its performance. Experimental results demonstrate the effectiveness of embedding congruity related information into recommendation systems.
324 - Kun Xu , Lingfei Wu , Zhiguo Wang 2018
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency graph or constituent trees. In this paper, we first p ropose to use the textit{syntactic graph} to represent three types of syntactic information, i.e., word order, dependency and constituency features. We further employ a graph-to-sequence model to encode the syntactic graph and decode a logical form. Experimental results on benchmark datasets show that our model is comparable to the state-of-the-art on Jobs640, ATIS and Geo880. Experimental results on adversarial examples demonstrate the robustness of the model is also improved by encoding more syntactic information.
Recommender systems often use latent features to explain the behaviors of users and capture the properties of items. As users interact with different items over time, user and item features can influence each other, evolve and co-evolve over time. Th e compatibility of user and items feature further influence the future interaction between users and items. Recently, point process based models have been proposed in the literature aiming to capture the temporally evolving nature of these latent features. However, these models often make strong parametric assumptions about the evolution process of the user and item latent features, which may not reflect the reality, and has limited power in expressing the complex and nonlinear dynamics underlying these processes. To address these limitations, we propose a novel deep coevolutionary network model (DeepCoevolve), for learning user and item features based on their interaction graph. DeepCoevolve use recurrent neural network (RNN) over evolving networks to define the intensity function in point processes, which allows the model to capture complex mutual influence between users and items, and the feature evolution over time. We also develop an efficient procedure for training the model parameters, and show that the learned models lead to significant improvements in recommendation and activity prediction compared to previous state-of-the-arts parametric models.
73 - Yu Shi , Jiaming Shen , Yuchen Li 2019
Text-rich heterogeneous information networks (text-rich HINs) are ubiquitous in real-world applications. Hypernymy, also known as is-a relation or subclass-of relation, lays in the core of many knowledge graphs and benefits many downstream applicatio ns. Existing methods of hypernymy discovery either leverage textual patterns to extract explicitly mentioned hypernym-hyponym pairs, or learn a distributional representation for each term of interest based its context. These approaches rely on statistical signals from the textual corpus, and their effectiveness would therefore be hindered when the signals from the corpus are not sufficient for all terms of interest. In this work, we propose to discover hypernymy in text-rich HINs, which can introduce additional high-quality signals. We develop a new framework, named HyperMine, that exploits multi-granular contexts and combines signals from both text and network without human labeled data. HyperMine extends the definition of context to the scenario of text-rich HIN. For example, we can define typed nodes and communities as contexts. These contexts encode signals of different granularities and we feed them into a hypernymy inference model. HyperMine learns this model using weak supervision acquired based on high-precision textual patterns. Extensive experiments on two large real-world datasets demonstrate the effectiveness of HyperMine and the utility of modeling context granularity. We further show a case study that a high-quality taxonomy can be generated solely based on the hypernymy discovered by HyperMine.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا