ﻻ يوجد ملخص باللغة العربية
Text-rich heterogeneous information networks (text-rich HINs) are ubiquitous in real-world applications. Hypernymy, also known as is-a relation or subclass-of relation, lays in the core of many knowledge graphs and benefits many downstream applications. Existing methods of hypernymy discovery either leverage textual patterns to extract explicitly mentioned hypernym-hyponym pairs, or learn a distributional representation for each term of interest based its context. These approaches rely on statistical signals from the textual corpus, and their effectiveness would therefore be hindered when the signals from the corpus are not sufficient for all terms of interest. In this work, we propose to discover hypernymy in text-rich HINs, which can introduce additional high-quality signals. We develop a new framework, named HyperMine, that exploits multi-granular contexts and combines signals from both text and network without human labeled data. HyperMine extends the definition of context to the scenario of text-rich HIN. For example, we can define typed nodes and communities as contexts. These contexts encode signals of different granularities and we feed them into a hypernymy inference model. HyperMine learns this model using weak supervision acquired based on high-precision textual patterns. Extensive experiments on two large real-world datasets demonstrate the effectiveness of HyperMine and the utility of modeling context granularity. We further show a case study that a high-quality taxonomy can be generated solely based on the hypernymy discovered by HyperMine.
Neural network-based approaches have become the driven forces for Natural Language Processing (NLP) tasks. Conventionally, there are two mainstream neural architectures for NLP tasks: the recurrent neural network (RNN) and the convolution neural netw
Cross-lingual Hypernymy Detection involves determining if a word in one language (fruit) is a hypernym of a word in another language (pomme i.e. apple in French). The ability to detect hypernymy cross-lingually can aid in solving cross-lingu
Dialogue state tracking (DST) plays a key role in task-oriented dialogue systems to monitor the users goal. In general, there are two strategies to track a dialogue state: predicting it from scratch and updating it from previous state. The scratch-ba
Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages, which is very useful for low-resource languages. Recent multilingual pretrained language models (mPLM) achieve
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency graph or constituent trees. In this paper, we first p