ﻻ يوجد ملخص باللغة العربية
In stochastic systems, numerically sampling the relevant trajectories for the estimation of the large deviation statistics of time-extensive observables requires overcoming their exponential (in space and time) scarcity. The optimal way to access these rare events is by means of an auxiliary dynamics obtained from the original one through the so-called ``generalised Doob transformation. While this optimal dynamics is guaranteed to exist its use is often impractical, as to define it requires the often impossible task of diagonalising a (tilted) dynamical generator. While approximate schemes have been devised to overcome this issue they are difficult to automate as they tend to require knowledge of the systems under study. Here we address this problem from the perspective of deep learning. We devise an iterative semi-supervised learning scheme which converges to the optimal or Doob dynamics with the clear advantage of requiring no prior knowledge of the system. We test our method in a paradigmatic statistical mechanics model with non-trivial dynamical fluctuations, the fully packed classical dimer model on the square lattice, showing that it compares favourably with more traditional approaches. We discuss broader implications of our results for the study of rare dynamical trajectories.
The large deviation (LD) statistics of dynamical observables is encoded in the spectral properties of deformed Markov generators. Recent works have shown that tensor network methods are well suited to compute the relevant leading eigenvalues and eige
Simple models of irreversible dynamical processes such as Bootstrap Percolation have been successfully applied to describe cascade processes in a large variety of different contexts. However, the problem of analyzing non-typical trajectories, which c
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the di
We use a neural network ansatz originally designed for the variational optimization of quantum systems to study dynamical large deviations in classical ones. We obtain the scaled cumulant-generating function for the dynamical activity of the Fredrick
Very often when studying non-equilibrium systems one is interested in analysing dynamical behaviour that occurs with very low probability, so called rare events. In practice, since rare events are by definition atypical, they are often difficult to a