ترغب بنشر مسار تعليمي؟ اضغط هنا

Large deviations of cascade processes on graphs

152   0   0.0 ( 0 )
 نشر من قبل Alfredo Braunstein
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simple models of irreversible dynamical processes such as Bootstrap Percolation have been successfully applied to describe cascade processes in a large variety of different contexts. However, the problem of analyzing non-typical trajectories, which can be crucial for the understanding of the out-of-equilibrium phenomena, is still considered to be intractable in most cases. Here we introduce an efficient method to find and analyze optimized trajectories of cascade processes. We show that for a wide class of irreversible dynamical rules, this problem can be solved efficiently on large-scale systems.



قيم البحث

اقرأ أيضاً

In stochastic systems, numerically sampling the relevant trajectories for the estimation of the large deviation statistics of time-extensive observables requires overcoming their exponential (in space and time) scarcity. The optimal way to access the se rare events is by means of an auxiliary dynamics obtained from the original one through the so-called ``generalised Doob transformation. While this optimal dynamics is guaranteed to exist its use is often impractical, as to define it requires the often impossible task of diagonalising a (tilted) dynamical generator. While approximate schemes have been devised to overcome this issue they are difficult to automate as they tend to require knowledge of the systems under study. Here we address this problem from the perspective of deep learning. We devise an iterative semi-supervised learning scheme which converges to the optimal or Doob dynamics with the clear advantage of requiring no prior knowledge of the system. We test our method in a paradigmatic statistical mechanics model with non-trivial dynamical fluctuations, the fully packed classical dimer model on the square lattice, showing that it compares favourably with more traditional approaches. We discuss broader implications of our results for the study of rare dynamical trajectories.
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We determine the conditioned large deviation function of density by a microscopic calculation. We then show that it can be expressed in terms of the solutions of Hamilton-Jacobi equations, which can be written for general diffusive systems using a fluctuating hydrodynamics description.
We use a neural network ansatz originally designed for the variational optimization of quantum systems to study dynamical large deviations in classical ones. We obtain the scaled cumulant-generating function for the dynamical activity of the Fredrick son-Andersen model, a prototypical kinetically constrained model, in one and two dimensions, and present the first size-scaling analysis of the dynamical activity in two dimensions. These results provide a new route to the study of dynamical large-deviation functions, and highlight the broad applicability of the neural-network state ansatz across domains in physics.
115 - Baruch Meerson 2019
Employing the optimal fluctuation method (OFM), we study the large deviation function of long-time averages $(1/T)int_{-T/2}^{T/2} x^n(t) dt$, $n=1,2, dots$, of centered stationary Gaussian processes. These processes are correlated and, in general, n on-Markovian. We show that the anomalous scaling with time of the large-deviation function, recently observed for $n>2$ for the particular case of the Ornstein-Uhlenbeck process, holds for a whole class of stationary Gaussian processes.
We present a systematic analysis of stochastic processes conditioned on an empirical measure $Q_T$ defined in a time interval $[0,T]$ for large $T$. We build our analysis starting from a discrete time Markov chain. Results for a continuous time Marko v process and Langevin dynamics are derived as limiting cases. We show how conditioning on a value of $Q_T$ modifies the dynamics. For a Langevin dynamics with weak noise, we introduce conditioned large deviations functions and calculate them using either a WKB method or a variational formulation. This allows us, in particular, to calculate the typical trajectory and the fluctuations around this optimal trajectory when conditioned on a certain value of $Q_T$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا