ﻻ يوجد ملخص باللغة العربية
Directly imaging the configurations of small molecules at the ambient temperatures will greatly promote the study of their chemical and physical properties, including the host-guest interactions of organics in porous materials during the adsorption, catalysis and energy storage. However, due to the current challenges on the small-molecule imaging by the (scanning) transmission electron microscopy ((S)TEM), we still have a lack of the molecular-level understandings on the host-guest interactions and other molecular behaviors. Here, we achieved the STEM imaging of various small aromatics confined in the MFI-type zeolite frameworks by using the integrated differential phase contrast (iDPC) technique. Due to the strong confinement effect in MFI channels, the 1D solid-like aromatic columns showed the coherent configurations, which were clearly resolved by enhancing the host-guest interactions. Then, we also evaluated the strength of host-guest interactions directly by the image analysis and revealed the desorption behaviors of confined aromatics during the in-situ heating process. These results not only helped us to reveal the configurations and host-guest interactions of small aromatics during the adsorption/desorption in porous materials, but also expanded the applications of STEM to further study other molecular behaviors in the real space.
We have investigated the equilibrium states of ferromagnetic single wall nanotubes by means of atomistic Monte Carlo simulations of a zig-zag lattice of Heisenberg spins on the surface of a cylinder. The main focus of our study is to determine how th
One of the main applications of atomistic computer simulations is the calculation of ligand binding energies. The accuracy of these calculations depends on the force field quality and on the thoroughness of configuration sampling. Sampling is an obst
High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating
Understanding the fundamental dynamics of topological vortex and antivortex naturally formed in micro/nanoscale ferromagnetic building blocks under external perturbations is crucial to magnetic vortex based information processing and spintronic devic
The progress of semiconductor electronics toward ever-smaller length scales and associated higher power densities brings a need for new high-resolution thermal microscopy techniques. Traditional thermal microscopy is performed by detecting infrared r