ﻻ يوجد ملخص باللغة العربية
In this article, we study high-dimensional behavior of empirical spectral distributions ${L_N(t), tin[0,T]}$ for a class of $Ntimes N$ symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter $H in(1/2,1)$. For Wigner-type matrices, we obtain almost sure relative compactness of ${L_N(t), tin[0,T]}_{Ninmathbb N}$ in $C([0,T], mathbf P(mathbb R))$ following the approach in cite{Anderson2010}; for Wishart-type matrices, we obtain tightness of ${L_N(t), tin[0,T]}_{Ninmathbb N}$ on $C([0,T], mathbf P(mathbb R))$ by tightness criterions provided in Appendix ref{subset:tightness argument}. The limit of ${L_N(t), tin[0,T]}$ as $Nto infty$ is also characterised.
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of as
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t
We consider eigenvalues of generalized Wishart processes as well as particle systems, of which the empirical measures converge to deterministic measures as the dimension goes to infinity. In this paper, we obtain central limit theorems to characteriz
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform hyp
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform ell