ﻻ يوجد ملخص باللغة العربية
Detecting pedestrians, especially under heavy occlusions, is a challenging computer vision problem with numerous real-world applications. This paper introduces a novel approach, termed as PSC-Net, for occluded pedestrian detection. The proposed PSC-Net contains a dedicated module that is designed to explicitly capture both inter and intra-part co-occurrence information of different pedestrian body parts through a Graph Convolutional Network (GCN). Both inter and intra-part co-occurrence information contribute towards improving the feature representation for handling varying level of occlusions, ranging from partial to severe occlusions. Our PSC-Net exploits the topological structure of pedestrian and does not require part-based annotations or additional visible bounding-box (VBB) information to learn part spatial co-occurrence. Comprehensive experiments are performed on two challenging datasets: CityPersons and Caltech datasets. The proposed PSC-Net achieves state-of-the-art detection performance on both. On the heavy occluded (textbf{HO}) set of CityPerosns test set, our PSC-Net obtains an absolute gain of 4.0% in terms of log-average miss rate over the state-of-the-art with same backbone, input scale and without using additional VBB supervision. Further, PSC-Net improves the state-of-the-art from 37.9 to 34.8 in terms of log-average miss rate on Caltech (textbf{HO}) test set.
Occlusion is very challenging in pedestrian detection. In this paper, we propose a simple yet effective method named V2F-Net, which explicitly decomposes occluded pedestrian detection into visible region detection and full body estimation. V2F-Net co
Pedestrian detection relying on deep convolution neural networks has made significant progress. Though promising results have been achieved on standard pedestrians, the performance on heavily occluded pedestrians remains far from satisfactory. The ma
Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN cl
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples, resulting in training sets with a long-tailed distribution. The lack of positive labels can lead to lo
Occluded person re-identification is a challenging task as the appearance varies substantially with various obstacles, especially in the crowd scenario. To address this issue, we propose a Pose-guided Visible Part Matching (PVPM) method that jointly