ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Multilayer Channel Features for Pedestrian Detection

95   0   0.0 ( 0 )
 نشر من قبل Yanwei Pang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN classifies these proposals. Despite its success, there is still room for improvement. For example, CNN classifies these proposals by the full-connected layer features while proposal scores and the features in the inner-layers of CNN are ignored. In this paper, we propose a unifying framework called Multilayer Channel Features (MCF) to overcome the drawback. It firstly integrates HOG+LUV with each layer of CNN into a multi-layer image channels. Based on the multi-layer image channels, a multi-stage cascade AdaBoost is then learned. The weak classifiers in each stage of the multi-stage cascade is learned from the image channels of corresponding layer. With more abundant features, MCF achieves the state-of-the-art on Caltech pedestrian dataset (i.e., 10.40% miss rate). Using new and accurate annotations, MCF achieves 7.98% miss rate. As many non-pedestrian detection windows can be quickly rejected by the first few stages, it accelerates detection speed by 1.43 times. By eliminating the highly overlapped detection windows with lower scores after the first stage, its 4.07 times faster with negligible performance loss.



قيم البحث

اقرأ أيضاً

Pedestrian detection has achieved great improvements with the help of Convolutional Neural Networks (CNNs). CNN can learn high-level features from input images, but the insufficient spatial resolution of CNN feature channels (feature maps) may cause a loss of information, which is harmful especially to small instances. In this paper, we propose a new pedestrian detection framework, which extends the successful RPN+BF framework to combine handcrafted features and CNN features. RoI-pooling is used to extract features from both handcrafted channels (e.g. HOG+LUV, CheckerBoards or RotatedFilters) and CNN channels. Since handcrafted channels always have higher spatial resolution than CNN channels, we apply RoI-pooling with larger output resolution to handcrafted channels to keep more detailed information. Our ablation experiments show that the developed handcrafted features can reach better detection accuracy than the CNN features extracted from the VGG-16 net, and a performance gain can be achieved by combining them. Experimental results on Caltech pedestrian dataset with the original annotations and the improved annotations demonstrate the effectiveness of the proposed approach. When using a more advanced RPN in our framework, our approach can be further improved and get competitive results on both benchmarks.
140 - Jiale Cao , Yanwei Pang , Jin Xie 2020
Pedestrian detection is an important but challenging problem in computer vision, especially in human-centric tasks. Over the past decade, significant improvement has been witnessed with the help of handcrafted features and deep features. Here we pres ent a comprehensive survey on recent advances in pedestrian detection. First, we provide a detailed review of single-spectral pedestrian detection that includes handcrafted features based methods and deep features based approaches. For handcrafted features based methods, we present an extensive review of approaches and find that handcrafted features with large freedom degrees in shape and space have better performance. In the case of deep features based approaches, we split them into pure CNN based methods and those employing both handcrafted and CNN based features. We give the statistical analysis and tendency of these methods, where feature enhanced, part-aware, and post-processing methods have attracted main attention. In addition to single-spectral pedestrian detection, we also review multi-spectral pedestrian detection, which provides more robust features for illumination variance. Furthermore, we introduce some related datasets and evaluation metrics, and compare some representative methods. We conclude this survey by emphasizing open problems that need to be addressed and highlighting various future directions. Researchers can track an up-to-date list at https://github.com/JialeCao001/PedSurvey.
Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. Recently, aggregating features from multiple layers of a CNN has been considered as an e ffective approach, however, the same approach regarding feature representation is used for detecting pedestrians of varying scales. Consequently, it is not guaranteed that the feature representation for pedestrians of a particular scale is optimised. In this paper, we propose a Scale-Aware Multi-resolution (SAM) method for pedestrian detection which can adaptively select multi-resolution convolutional features according to pedestrian sizes. The proposed SAM method extracts the appropriate CNN features that have strong representation ability as well as sufficient feature resolution, given the size of the pedestrian candidate output from a region proposal network. Moreover, we propose an enhanced SAM method, termed as SAM+, which incorporates complementary features channels and achieves further performance improvement. Evaluations on the challenging Caltech and KITTI pedestrian benchmarks demonstrate the superiority of our proposed method.
Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and deformable DETR, replace hand designed components such as NMS and anchors using the transformer architecture, which gets rid of duplicate predictions by computing all pairwise interactions between queries. Inspired by these works, we explore their performance on crowd pedestrian detection. Surprisingly, compared to Faster-RCNN with FPN, the results are opposite to those obtained on COCO. Furthermore, the bipartite match of ED harms the training efficiency due to the large ground truth number in crowd scenes. In this work, we identify the underlying motives driving EDs poor performance and propose a new decoder to address them. Moreover, we design a mechanism to leverage the less occluded visible parts of pedestrian specifically for ED, and achieve further improvements. A faster bipartite match algorithm is also introduced to make ED training on crowd dataset more practical. The proposed detector PED(Pedestrian End-to-end Detector) outperforms both previous EDs and the baseline Faster-RCNN on CityPersons and CrowdHuman. It also achieves comparable performance with state-of-the-art pedestrian detection methods. Code will be released soon.
Deep learning methods have achieved great success in pedestrian detection, owing to its ability to learn features from raw pixels. However, they mainly capture middle-level representations, such as pose of pedestrian, but confuse positive with hard n egative samples, which have large ambiguity, e.g. the shape and appearance of `tree trunk or `wire pole are similar to pedestrian in certain viewpoint. This ambiguity can be distinguished by high-level representation. To this end, this work jointly optimizes pedestrian detection with semantic tasks, including pedestrian attributes (e.g. `carrying backpack) and scene attributes (e.g. `road, `tree, and `horizontal). Rather than expensively annotating scene attributes, we transfer attributes information from existing scene segmentation datasets to the pedestrian dataset, by proposing a novel deep model to learn high-level features from multiple tasks and multiple data sources. Since distinct tasks have distinct convergence rates and data from different datasets have different distributions, a multi-task objective function is carefully designed to coordinate tasks and reduce discrepancies among datasets. The importance coefficients of tasks and network parameters in this objective function can be iteratively estimated. Extensive evaluations show that the proposed approach outperforms the state-of-the-art on the challenging Caltech and ETH datasets, where it reduces the miss rates of previous deep models by 17 and 5.5 percent, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا