ﻻ يوجد ملخص باللغة العربية
Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN classifies these proposals. Despite its success, there is still room for improvement. For example, CNN classifies these proposals by the full-connected layer features while proposal scores and the features in the inner-layers of CNN are ignored. In this paper, we propose a unifying framework called Multilayer Channel Features (MCF) to overcome the drawback. It firstly integrates HOG+LUV with each layer of CNN into a multi-layer image channels. Based on the multi-layer image channels, a multi-stage cascade AdaBoost is then learned. The weak classifiers in each stage of the multi-stage cascade is learned from the image channels of corresponding layer. With more abundant features, MCF achieves the state-of-the-art on Caltech pedestrian dataset (i.e., 10.40% miss rate). Using new and accurate annotations, MCF achieves 7.98% miss rate. As many non-pedestrian detection windows can be quickly rejected by the first few stages, it accelerates detection speed by 1.43 times. By eliminating the highly overlapped detection windows with lower scores after the first stage, its 4.07 times faster with negligible performance loss.
Pedestrian detection has achieved great improvements with the help of Convolutional Neural Networks (CNNs). CNN can learn high-level features from input images, but the insufficient spatial resolution of CNN feature channels (feature maps) may cause
Pedestrian detection is an important but challenging problem in computer vision, especially in human-centric tasks. Over the past decade, significant improvement has been witnessed with the help of handcrafted features and deep features. Here we pres
Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. Recently, aggregating features from multiple layers of a CNN has been considered as an e
Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and
Deep learning methods have achieved great success in pedestrian detection, owing to its ability to learn features from raw pixels. However, they mainly capture middle-level representations, such as pose of pedestrian, but confuse positive with hard n