ﻻ يوجد ملخص باللغة العربية
Random, uncorrelated displacements of particles on a lattice preserve the hyperuniformity of the original lattice, that is, normalized density fluctuations vanish in the limit of infinite wavelengths. In addition to a diffuse contribution, the scattering intensity from the the resulting point pattern typically inherits the Bragg peaks (long-range order) of the original lattice. Here we demonstrate how these Bragg peaks can be hidden in the effective diffraction pattern of independent and identically distributed perturbations. All Bragg peaks vanish if and only if the sum of all probability densities of the positions of the shifted lattice points is a constant at all positions. The underlying long-range order is then cloaked in the sense that it cannot be reconstructed from the pair correlation function alone. On the one hand, density fluctuations increase monotonically with the strength of perturbations $a$, as measured by the hyperuniformity order metric $overline{Lambda}$. On the other hand, the disappearance and reemergence of long-range order, depending on whether the system is cloaked or not as the perturbation strength increases, is manifestly captured by the $tau$ order metric. Therefore, while the perturbation strength $a$ may seem to be a natural choice for an order metric of perturbed lattices, the $tau$ order metric is a superior choice. It is noteworthy that cloaked perturbed lattices allow one to easily simulate very large samples (with at least $10^6$ particles) of disordered hyperuniform point patterns without Bragg peaks.
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An
We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium st
We address the statistical mechanics of randomly and permanently crosslinked networks. We develop a theoretical framework (vulcanization theory) which can be used to systematically analyze the correlation between the statistical properties of random
The overdamped motion of a Brownian particle in randomly switching piece-wise metastable linear potential shows noise enhanced stability (NES): the noise stabilizes the metastable system and the system remains in this state for a longer time than in
The long-time asymptotic behavior is studied for a long-range variant of the Emch-Radin model of interacting spins. We derive upper and lower bounds on the expectation values of a class of observables. We prove analytically that the time scale at whi