ﻻ يوجد ملخص باللغة العربية
We show that a small conducting object, such as a nanosphere or a nanoring, embedded into or placed in the vicinity of the two-dimensional electron liquid (2DEL) and subjected to a circularly polarized electromagnetic radiation induces ``twisted plasmonic oscillations in the adjacent 2DEL. The oscillations are rectified due to the hydrodynamic nonlinearities leading to the helicity sensitive circular dc current and to a magnetic moment. This hydrodynamic inverse Faraday effect (HIFE) can be observed at room temperature in different materials. The HIFE is dramatically enhanced in a periodic array of the nanospheres forming a resonant plasmonic coupler. Such a coupler exposed to a circularly polarized wave converts the entire 2DEL into a vortex state. Hence, the twisted plasmonic modes support resonant plasmonic-enhanced gate-tunable optical magnetization. Due to the interference of the plasmonic and Drude contributions, the resonances have an asymmetric Fano-like shape. These resonances present a signature of the 2DEL properties not affected by contacts and interconnects and, therefore, providing the most accurate information about the 2DEL properties. In particular, the widths of the resonances encode direct information about the momentum relaxation time and viscosity of the 2DEL.
A circularly polarized light can induce a dissipationless dc current in a quantum nanoring which is responsible for a resonant helicity-driven contribution to magnetic moment. This current is not suppressed by thermal averaging despite its quantum na
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect
We have studied helicity dependent photocurrent (HDP) in Bi-based Dirac semimetal thin films. HDP increases with film thickness before it saturates, changes its sign when the majority carrier type is changed from electrons to holes and takes a sharp
Fluid dynamics is one of the cornerstones of modern physics and has recently found applications in the transport of electrons in solids. In most solids electron transport is dominated by extrinsic factors, such as sample geometry and scattering from
We present numerical calculations of the electron effective mass in an interacting, ferromagnetic, two-dimensional electron system. We consider quantum interaction effects associated with the charge-density fluctuation induced many-body vertex correc