ﻻ يوجد ملخص باللغة العربية
We present numerical calculations of the electron effective mass in an interacting, ferromagnetic, two-dimensional electron system. We consider quantum interaction effects associated with the charge-density fluctuation induced many-body vertex corrections. Our theory, which is free of adjustable parameters, reveals that the effective mass is suppressed (relative to its band value) in the strong coupling limit, in good agreement with the results of recent experimental measurements.
We measure the effective mass (m*) of interacting two-dimensional electrons confined to a 4.5 nm-wide AlAs quantum well. The electrons in this well occupy a single out-of-plane conduction band valley with an isotropic in-plane Fermi contour. When the
We report on angle-dependent measurements of the sheet resistances and Hall coefficients of electron liquids in SmTiO3/SrTiO3/SmTiO3 quantum well structures, which were grown by molecular beam epitaxy on (001) DyScO3. We compare their transport prope
We have realized an AlAs two-dimensional electron system in which electrons occupy conduction-band valleys with different Fermi contours and effective masses. In the quantum Hall regime, we observe both resistivity spikes and persistent gaps at cross
A system of confined charged electrons interacting via the long-range Coulomb force can form a Wigner crystal due to their mutual repulsion. This happens when the potential energy of the system dominates over its kinetic energy, i.e., at low temperat
Phase transitions and critical phenomena, which are dominated by fluctuations and correlations, are one of the fields replete with physical paradigms and unexpected discoveries. Especially for two-dimensional magnetism, the limitation of the Ginzburg