ﻻ يوجد ملخص باللغة العربية
In this work we suggest a sufficiently simple for understanding without knowing the details of the quantum gravity and quite correct deduction of the Unruh temperature (but not whole Unruh radiation process!). Firstly, we shall directly apply usual consequences of the Unruh radiation and temperature at surface gravity of a large spherical physical system and we shall show that corresponding thermal energy can be formally quite correctly presented as the potential energy absolute value of the classical gravitational interaction between this large and a small quantum system with well defined characteristics. Secondly, we shall inversely postulate small quantum system with necessary well defined characteristics and then, after supposition on the equivalence between potential energy absolute value of its gravitational interaction with large system with thermal energy, we shall obtain exact value of the Unruh temperature. Moreover, by very simple and correct application of suggested formalism (with small quantum system) at thermodynamic laws, we shall successfully study other thermodynamic characteristics, especially entropy, characteristic for Unruh and Hawking radiation
We study the estimation of parameters in a quantum metrology scheme based on entangled many-body Unruh-DeWitt detectors. It is found that the precision for the estimation of Unruh effect can be enhanced via initial state preparations and parameter se
We find necessary and sufficient conditions for existence of a locally isometric embedding of a vacuum space-time into a conformally-flat 5-space. We explicitly construct such embeddings for any spherically symmetric Lorentzian metric in $3+1$ dimens
Inspired by the condensed matter analogues of black holes (a.k.a. dumb holes), we study Hawking radiation in the presence of a modified dispersion relation which becomes super-luminal at large wave-numbers. In the usual stationary coordinates $(t,x)$
In this paper, the modified Hawking temperature of a static Riemann space-time is studied using the generalized Klein-Gordon equation and the generalized Dirac equation. Applying the Kerner-Mann quantum tunneling method, the modified Hawking temperat
Acoustic holes are the hydrodynamic analogue of standard black holes. Featuring an acoustic horizon, these systems spontaneously emit phonons at the Hawking temperature. We derive the Hawking temperature of the acoustic horizon by fully exploiting th