ﻻ يوجد ملخص باللغة العربية
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics cannot be reconciled with classical models that are noncontextual for ideal measurements. The first explicit derivation by Kochen and Specker was rather complex, but considerable simplifications have been achieved thereafter. We propose a systematic approach to find minimal Hardy-type and Greenberger-Horne-Zeilinger-type (GHZ-type) proofs of the Kochen-Specker theorem, these are characterized by the fact that the predictions of classical models are opposite to the predictions of quantum mechanics. Based on our results, we show that the Kochen-Specker set with 18 vectors from Cabello et al. [A. Cabello et al., Phys. Lett. A 212, 183 (1996)] is the minimal set for any dimension, verifying a longstanding conjecture by Peres. Our results allow to identify minimal contextuality scenarios and to study their usefulness for information processing.
A review is made of the field of contextuality in quantum mechanics. We study the historical emergence of the concept from philosophical and logical issues. We present and compare the main theoretical frameworks that have been derived. Finally, we fo
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is rele
We present a proof of the compositional shuffle conjecture, which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra. We first formulate the combinatorial side of the conjecture in terms of certain operato
Peres lattices are employed as a visual method to identify the presence of chaos in different regions of the energy spectra in the Dicke model. The coexistence of regular and chaotic regions can be clearly observed for certain energy regions, even if
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of