ﻻ يوجد ملخص باللغة العربية
We designed, fabricated and tested gallium phosphide (GaP) nano-waveguides for second harmonic generation (SHG). We demonstrate SHG in the visible range around 655 nm using low power continuous-wave pump in the optical communication O-band. Our structures utilize modal phase matching, such that lower order eigenmodes of the pump are phase matched to higher order eigenmodes of the second harmonic. We observe phase matched SHG for different combinations of interacting modes by varying the widths of the waveguides and tuning the wavelength of the pump. The presented results contribute to the development of integrated photonic platforms with efficient nonlinear wave-mixing processes for classical and quantum applications.
We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effi
Resonant metasurfaces are an attractive platform for enhancing the non-linear optical processes, such as second harmonic generation (SHG), since they can generate very large local electromagnetic fields while relaxing the phase-matching requirements.
We demonstrate enhanced second harmonic generation in a gallium phosphide photonic crystal waveguide with a measured external conversion efficiency of 5$times10^{-7}$/W. Our results are promising for frequency conversion of on-chip integrated emitter
We theoretically investigate second harmonic generation in extremely narrow, sub-wavelength semiconductor and dielectric waveguides. We discuss a novel guiding mechanism characterized by the inhibition of diffraction and the suppression of cut-off li
Photonic crystal nanocavities at visible wavelengths are fabricated in a high refractive index (n>3.2) gallium phosphide membrane. The cavities are probed via a cross-polarized reflectivity measurement and show resonances at wavelengths as low as 645